带有尖形式Fourier系数的指数和估计

李伟平, 赵峰

数学学报 ›› 2017, Vol. 60 ›› Issue (5) : 815-822.

PDF(422 KB)
PDF(422 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (5) : 815-822. DOI: 10.12386/A2017sxxb0069
论文

带有尖形式Fourier系数的指数和估计

    李伟平1, 赵峰2
作者信息 +

The Exponential Sum Related to the Fourier Coefficient of Cusp Form

    Wei Ping LI1, Feng ZHAO2
Author information +
文章历史 +

摘要

λfn)是全模群Γ上权为k的全纯Hecke特征形f的第n个Fourier系数,Λ(n)是Mangoldt 函数. 本文得到了如下估计 ΣX<n≤2XΛ(nλfne(√nα)<<f,α X(5/6)(logX(13/2),(α>0),改进了Zhao的结果.

Abstract

Let λf(n) be the n-th Fourier coefficient of a holomorphic Hecke eigenform f of weight k for the full modular group Γ, Λ(n) is the Mangoldt function. In this paper, we proved the following result:ΣX<n ≤ 2XΛ(n)λf(n)e(√nα)<<f,α X(5/6)(logX)(13/2),(α>0), which improved Zhao's result.

关键词

尖形式 / 指数和 / Rankin-Selberg L-函数

Key words

cusp form / exponential sum / Rankin-Selberg L-function

引用本文

导出引用
李伟平, 赵峰. 带有尖形式Fourier系数的指数和估计. 数学学报, 2017, 60(5): 815-822 https://doi.org/10.12386/A2017sxxb0069
Wei Ping LI, Feng ZHAO. The Exponential Sum Related to the Fourier Coefficient of Cusp Form. Acta Mathematica Sinica, Chinese Series, 2017, 60(5): 815-822 https://doi.org/10.12386/A2017sxxb0069

参考文献

[1] Deligne P., La Conjecture de Weil, Publ. Math. Inst. Hautes Etudes Sci., 1974, 43: 29-39.
[2] Fouvry E., Ganguly S., Strong orthogonality between the mobius function, additive characters, and fourier coefficients of cusp forms, Compositio Math., 2014, 150: 763-797.
[3] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., vol 53 Amer. Math. Soc., Providence, 2004.
[4] Iwaniec H., Luo W., Sarnak P., Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math., 2000, 91: 55-131.
[5] Jutila M., On exponential sums involving the Ramanujan function, Proc. Indian Acad. Sci. Math. Sci., 1987, 97: 157-166.
[6] Jutila M., Lectures on a method in the theory of exponential sums, Lectures on Mathematics and Physics, 80, Bombay, India: Tate Institute of Fundamental Research, 1987.
[7] Lau Y., Wu J., A density theorem on automorphic L-functions and some applications, Trans. Amer. Math. Soc., 2006, 358: 441-472.
[8] Lü G., The sixth and eighth moments of Fourier coefficients of cusp forms, J. Number Theory, 2009, 129: 2790-2800.
[9] Pi Q., Sun Q., Oscillations of cusp form coefficients in exponential sums, Ramanujan J., 2010, 21: 53-64.
[10] Wilton J. R., A note on Ramanujan's arithmetical function τ(n), Proc. Cambridge Philos. Soc., 1929, 25: 121-129.
[11] Zhao L., Oscillations of Hecke eigenvalues at shifted primes, Rev. Mat. Iberoamericana, 2006, 22: 323-337.

基金

国家自然科学基金资助项目(11371122,11471112);2011河南省创新型科技人才队伍建设工程,2013年河南省科技创新杰出人才河南省科技攻关项目(152102310320),河南省教育厅重点科研项目(17A110009)

PDF(422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/