基于样本均值的最优无重叠k-序对排序集抽样

李涛, 吴边

数学学报 ›› 2017, Vol. 60 ›› Issue (6) : 897-910.

PDF(625 KB)
PDF(625 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (6) : 897-910. DOI: 10.12386/A2017sxxb0077
论文

基于样本均值的最优无重叠k-序对排序集抽样

    李涛1, 吴边2
作者信息 +

Optimal Allocation for the Mean of the No Overlap k-tuple Ranked Set Samples

    Tao LI1, Bian WU2
Author information +
文章历史 +

摘要

本文提出了无重叠k-序对排序集抽样方法,即在每个排序集中对k-序对个体进行观测,并且不同的排序集的k-序对之间没有任何重复.我们首先探究了此抽样方法得到的样本均值的有效性随每个排序集中k-序对个体间的相关性变化的趋势.k-序对个体间的相关性越强,样本均值的有效性损失越大.本文的目的是找到无重叠k-序对排序集抽样方法中k-序对分配的最优方案从而使样本均值的有效性损失最小,并证明了最优的无重叠k-序对排序集抽样比广义排序集抽样以及简单随机抽样更有效.尽管无重叠k-序对排序集抽样方法的统计效率低于经典的排序集抽样,但是在成本模型下,最优的无重叠k-序对排序集抽样方法可以比经典的排序集抽样更有效.

Abstract

We propose an alternative ranked set sampling scheme-no overlap k-tuple ranked set sample, in which k units are quantified in each set and the units in different sets have sample mean and show that the correlations between the k-units and show that the correlations between the k-units in each set decreases the efficiency of the sample mean. The stronger the correlation structure is, the more the efficiency of the sample mean decreases. The purpose of this work is to find the optimal k-tuple ranked set sample and prove that the no overlap k-tuple ranked set sample with the optimal allocation is more efficient than generalized k-tuple ranked set sample and simple sample and simple random sample. Although the statistical efficiency of no overlap k-tuple ranked set sample is not as much as the classic ranked set sample, under the consider of the cost for sampling and ranking, the no overlap k-tuple ranked set sample is more efficient than the classic ranked set sample.

关键词

无重叠k-序对排序集抽样 / 相对效率 / 最优分配 / 成本

Key words

no overlap k-tuple ranked set sample / relative efficiency / optimal allocation / cost

引用本文

导出引用
李涛, 吴边. 基于样本均值的最优无重叠k-序对排序集抽样. 数学学报, 2017, 60(6): 897-910 https://doi.org/10.12386/A2017sxxb0077
Tao LI, Bian WU. Optimal Allocation for the Mean of the No Overlap k-tuple Ranked Set Samples. Acta Mathematica Sinica, Chinese Series, 2017, 60(6): 897-910 https://doi.org/10.12386/A2017sxxb0077

参考文献

[1] Balakrishnan N., Cohen A. C., Order Statistics and Inference:Estimation Methods, Academic Press, San Diego, 1991.
[2] Burkschat M., Multivariate dependence of spacings of generalized order statistics. Journal of Multivariate Analysis, 2009, 100:1093-1106.
[3] Chen Z., Bai Z., Sinha B. K., Ranked Set Sampling:Theory and Application, Springer-Verlag, New York, 2006.
[4] Chen Z., Liu J., Shen L., Wang Y., General ranked set sampling for efficient treatment comparisons, Statistica Sinica, 2008, 18:91-104.
[5] Chen H., Stasny E. A., Wolfe D. A., Improved procedures for estimation of disease prevalence using ranked set sampling, Biometrical Journal, 2007, 49:530-538.
[6] Dell T. R., Clutter J. L., Ranked set sampling theory with order statistics background, Biometrics, 1972, 28:545-555.
[7] Frey J., Distribution-free statistical intervals via ranked-set sampling. Canadian Journal of Statistics, 2007, 35:585-596.
[8] Ghosh K., Tiwari R. C., Estimating the distribution function using k-tuple ranked set samples. Journal of Statistical Planning and Inference, 2008, 138:929-949.
[9] Hatefi A., Jafari Jozani M., Ziou D., Statistical inference for finite mixture models based on ranked set samples. Statistical Sinica, 2014, 24:675-698.
[10] Hatefi A., Jafari Jozani M., Ozturk O., Mixture Model Analysis of Partially Rank-Ordered Set Samples:Age Groups of Fish from Length-Frequency Data Scandinavian Journal of Statistics, 2015, 42:848-871.
[11] MacEachern S. N., Ozturk O., Wolfe D. A., et al., A new ranked set sample estimator of variance. Journal of the Royal Statistical Society, Series B, 2002, 64:177-188.
[12] McIntyre G. A., A method for unbiased selective sampling, using ranked sets, Australian Journal of Agricultural Research, 1952, 3:385-390.
[13] Muttlak H. A., McDonald L. L., Ranked set sampling and the line intercept method:a more efficient procedure, Biometrical Journal, 1992, 34:329-346.
[14] Murray R., Ridout M., Cross J., The use of ranked set sampling in spray deposit assessment, Aspect of Applied Biology, 2000, 57:141-146.
[15] Nahhas R. W., Wolfe D. A., Chen H., Ranked set smapling:Cost and optimal set size, Biometrics, 2002, 58:964-971.
[16] Ozturk O., Rank regression in ranked-set samples, Journal of the American Statistical Association, 2002, 97:1180-1191.
[17] Ozturk O., Statistical inference in the presence of ranking error in ranked set sampling, Canadian Journal of Statistics, 2008, 97:1180-1191.
[18] Ozturk O., Wolfe D. A., Alternative ranked set sampling protocols for the signed test, Statistics & Probability Letters, 2000, 47:15-23.
[19] Takahasi K., Wakimoto K., On unbiased estimates of the population mean based on the sample stratified by means of ordering, Annals of the Institute of Statistical Mathematics, 1968, 20:1-31.
[20] Tukey J. W., A problem of Berkson, and minimum variance orderly estimators, Annals of Mathematical Statistics, 1958, 29:588-592.
[21] Wang X., Limb J., Stokes L., Using Ranked Set Sampling with Cluster Randomized Designs for Improved Inference on Treatment Effects, Journal of the American Statistical Association, 2016, 111:1576-1590.
[22] Wang Y. G., Chen Z., Liu J., General ranked set sampling with cost considerations, Biometrics, 2014, 60:556-561.
[23] Wolfe D. A., Ranked set sampling:Its relevance and impact on statistical inference, ISRN Probability and Statistics, 2012, Article ID 568385, 32 pages.

基金

国家自然科学基金委重大研究计划重点项目(91546202)

PDF(625 KB)

Accesses

Citation

Detail

段落导航
相关文章

/