一般状态空间跳过程的强遍历性

张水利, 张邵义

数学学报 ›› 2017, Vol. 60 ›› Issue (6) : 931-946.

PDF(543 KB)
PDF(543 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (6) : 931-946. DOI: 10.12386/A2017sxxb0080
论文

一般状态空间跳过程的强遍历性

    张水利1,2, 张邵义1
作者信息 +

The Strongly Ergodicity of Jump Processes on General State Space

    Shui Li ZHANG1,2, Shao Yi ZHANG1
Author information +
文章历史 +

摘要

研究了一般状态空间跳过程的强遍历性,利用最小非负解理论及马氏性,得到了强遍历性的几个等价条件,把连续时间可数状态马氏链的相关结果推广到一般状态空间跳过程的情形.

Abstract

We study the strong ergodicity for jump processes in general state spaces, and obtain some equivalence conditions of strongly ergodicity by minimal nonnegative solutions and strongly Markov property. which extended the results of countable state to the jump processes on genersl state spaces.

关键词

跳过程 / 强遍历 / q / 细集

Key words

jump processes / strongly ergodicity / q-pair / petite set

引用本文

导出引用
张水利, 张邵义. 一般状态空间跳过程的强遍历性. 数学学报, 2017, 60(6): 931-946 https://doi.org/10.12386/A2017sxxb0080
Shui Li ZHANG, Shao Yi ZHANG. The Strongly Ergodicity of Jump Processes on General State Space. Acta Mathematica Sinica, Chinese Series, 2017, 60(6): 931-946 https://doi.org/10.12386/A2017sxxb0080

参考文献

[1] Chen M. F., Form Markov Chains to Non-equilibrium Particle Systems (Second Edition), World Scientific, Singapore, 2004.
[2] Down D., Meyn S. P., Tweedie R. L., Exponential and uniform ergodicity of Markov processes, Ann. Prob., 1995, 23(4):1671-1691.
[3] Liu Y. Y., Hou Z. T., Exponential and strong ergodicity for Markov processes with an application to queues, Chin. Ann. Math. Ser. B, 2008, 29(2):199-206.
[4] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability, Springer-Verlag, London, 1992.
[5] Meyn S. P., Tweedie R. L., Generalize resolvents and harris recurrence of Markov processes, Contemp. Math., 1992, 149:227-250.
[6] Meyn S. P., Tweedie R. L., Stability of Markov processe Ⅱ:continuous time proccesses and sampled chanis, Adv. Appl. Prob., 1993, 25:487-517.
[7] Meyn S. P., Tweedie R. L., Stability of Markov processes Ⅲ:Foster-Lyapunov criteria for continuous time processes, Adv. Appl. Prob., 1993, 25:518-548.
[8] Wang Z. K., The General Theory of Stochastic Process (Three Edition) (in Chinese), Beijing Normal University Press, Beijing, 2010.
[9] William J. A., Continuous-Time Markov Chains:An Applications-Oriented Approach, Springer-Verlag, New York, 1991.
[10] Zhang S. Y., Regularity and existence of invariant measures for jump processes, Acta Mathematica Sinica, Chinese Series, 2005, 48(4):785-788.
[11] Zhang S. Y., Existence of the optimal measurable coupling and ergodicity for Markov processes, Science in China, Ser. A, 1999, 42(1):58-67.

基金

平顶山学院高层次人才科研启动基金资助(PXY-BSQD2016006)

PDF(543 KB)

278

Accesses

0

Citation

Detail

段落导航
相关文章

/