
相依误差广义线性模型的M估计的Bahadur表示
Bahadur Representations of the M-estimation in GLMs with Dependent Errors
考虑如下广义线性模型yi=h(xiTβ)+ei,i=1,2,...,n,其中ei=G(...,εi-1,εi),h是一个连续可导函数,εi是独立同分布的随机变量,并且它的期望为0,方差σ2有限.本文给出了参数β的M估计,并且得到了该估计的Bahadur表示,该结论推广了线性模型的相关结论.应用M估计的Bahadur表示,得到了相依误差的线性回归模型,poisson模型,logistic模型和独立误差的广义线性模型等模型的渐近性质.
The paper studies a generalized linear model (GLM) yi=h(xiTβ)+ei,i=1,2,...,n, where ei=G(...,εi-1, εi), h is a continuous differentiable function, εi's are independent and identically distributed (i.i.d.) random errors with zero mean and finite variance σ2. We consider the M-estimator of parameter β in the model, and investigate the Bahadur representations, which extend the correspondingly results of linear regression models to the generalized linear model. Moreover, by our results, it is easy to obtain the asymptotic properties of βn in some models, including linear regression models with dependent errors, poisson models with dependent errors, logistic models with dependent errors, and GLMs with i.i.d. errors.
广义线性模型 / M-估计 / Bahadur表示 / 相依误差 {{custom_keyword}} /
generalized linear models / M-estimator / Bahadur representations / dependent errors {{custom_keyword}} /
[1] Aeberhard W. H., Cantoni E., Heritier S., Robust inference in the negative binomial regression model with an application to falls data, Biometrics, 2014, 70(4):920-931.
[2] Anderson T. W., Taylor J. B., Strong consistency of the least squares estimates in normal linear regression, Ann. Statist., 1976, 4:788-790.
[3] Bai Y., Fung W., Zhu Z., Weighted empirical likelihood for generalized linear models with longitudinal data, J. Stat. Plan. Infer., 2010, 140:3446-3456.
[4] Battauz M., Bellio R., Structural modelling of measurement error in generalized linear models with rasch measures as covariates, Psychomerika, 2011, 76(1):40-56.
[5] Bianco A. M., Boente G., Rodrigues I. M., Resisitant estimators in Poisson and Gamma models with missing response and an application to outlier detection, J. Multivariate Ana., 2013, 14:2009-226.
[6] Cantoni E., Ronchetti., Robust inference for generalized linear models, J. Amer. Statist. Assoc., 2001, 96:1022-1030.
[7] Chen J., Li D., Lin Z., Asymptotic expansions for nonparametric M-estimator in a nonlinear regression model with long-memory errors, J. Stat. Plan. Infer., 2011, 141:3035-3046.
[8] Chen K., Hu I., Ying Z., Strong consistency of maximum likelihood estimators in generalized linear models with fixed and adaptive designs, Ann. Statist., 1999, 27(4):1155-1163.
[9] Chen S. X., Cui H., An extended empirical likelihood for generalized linear models, Statist. Sci., 2003, 13:69-81.
[10] Chen X., Consistency of LS estimates of multiple regression under a lower order moment condition, Sci. Chin. A, 1995, 38(12):1420-1431.
[11] Chien L., Tsou T., Deletion diagnostics for generalized linear models using the adjusted Poisson likelihood function, Fuel. Energ. Abstracts, 2011, 141(6):2044-2054.
[12] Cui H. J., On asymptotic of t-type regression estimation in multiple linear model, Sci. Chin. A, 2004, 47(4):628-639.
[13] Dasgupta S., Khare K., Gghosh M., Asymptotic expansion of the posterior density in high dimensional generalized linear models, J. Multivariate Anal., 2014, 13:126-148.
[14] Ding J. L., Chen X. R., Asymptotic properties of the maximum likelihood estimate in generalized linear models with stochastic regressors, Acta Math. Sci., English Series, 2006, 22(6):1679-1686.
[15] Dobson A. J., An Introduction to Generalized Linear Models Ⅱ, Chapman & Hall, London, 2002.
[16] Doukhan P., Lang G., Surgailis D., et al., Dependence in Probability and Statistics, Springer-Verlag, Berlin, 2010.
[17] Fahrmeir L., Kaufmann H., Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist, 1985, 13(4):342-368.
[18] Fan J., Yan A., Xiu N., Asymptotic properties for M-estimators in linear models with dependent random errors, J. Stat. Plan. Infer., 2014, 148:49-66.
[19] Fox R., Taqqu M. S., Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist, 1986, 14:517-532.
[20] Freedman D. A., On tail probabilities for martingales, Ann. Probab., 1975, 3:100-118.
[21] Gao Q., Wu Y., Zhu C., et al., Asymptotic normality of maximum quasi-likelihood estimators in generalized linear models with fixed design, J. Syst. Sci. and Complexity, 2008, 21:463-473.
[22] Ghosh A., Basu A., Robust estimation in generalized linear models:the density power diver divergence approach, Test, 2016, 25:269-290.
[23] Giraitis L., Surgailis D., A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle's estimate, Probab. Relat. Fields, 1990, 86:87-104.
[24] Giraitis L., Koul H. L., Estimation of the dependence parameter in linear regression with long memory errors, Stoch. Proc. Appl., 1997, 71:207-224.
[25] Hall P., Heyde C. C., Martingale Limit Theory and its Application, Academic, New York, 1980.
[26] Hamilton J. D., Time Series Analysis, Princeton University Press, New Jersey, 1994.
[27] Hosseinian S., Robust inference for generalized linear models:binary and poisson regression, Thesis, Ecole Polytechnique Federal de Lausanne, 2009.
[28] Hu H. C., QML estimators in linear regression models with functional coefficient autoregressive processes, Mathematical Problems in Engineering, 2010, doi:10.1155/2010/956907.
[29] Hu H. C., Asymptotic normality of Huber-Dutter estimators in a linear model with AR(1) processes, J. Stat. Plan. Infer., 2013, 143:548-562.
[30] Huang L., Wang H., Zheng A., The M-estimator for function linear regression model, Stat. Probab. Lett., 2014, 88:165-173.
[31] Huber P. J., Robust estimation of a location parameter, Ann. Math. Statist., 1964, 35:73-101.
[32] Huber P. J., Robust regression:Asymptotics, conjecures, and Monte-Carlo, Ann. Statist., 1973, 1:799-821.
[33] Johnson R. A., On asymptotic expansion for posterior distribution, Ann. Math. Statist., 1967, 42:1241-1253.
[34] Koul H. L., Surgailis D., Asymptotic normality of the Whittle estimator in linear regression models with long memory errors, Stat. Infer. Stoch. Proc., 2000, 3:129-147.
[35] Maller R. A., Quadrtic negligibility and the asymptotic normality of operator normed sums, J. Multivariate Anal., 1993, 44:191-219.
[36] Maller R. A., Asymptotics of regressions with stationary and nonstationary residuals, Stoch. Proc. Appl., 2003, 105:33-67.
[37] Marina V., Victor J., Yohai, Robust estimators for generalized linear models. J. Stat. Plan. Infer., 2014, 146:31-48.
[38] McCullagh P., Nelder J. A., Generalized Linear Models Ⅱ, Chapman & Hall, London, 1989.
[39] Pere P., Adjusted estimates and Wald statistics for the AR(1) model with constant, J. Econometrics, 2000, 98:335-363.
[40] Rao C. R., Linear Statistical Inference and Its Applications, Wiley, New York, 1973.
[41] Rao C. R., Zhao L. C., Linear representation of M-estimates in linear models, Can. J. Stat., 1992, 20(4):359-368.
[42] Relles D., Robust Estimation by Modified Least Squares, Ph.D. Thesis, Yale University, 1968.
[43] Shiohama T., Taniguchi M., Sequential estimation for time series regression models, J. Stat. Plan. Infer., 2004, 123:295-312.
[44] Sinha S. K., Robust designs for multivariate logistic regression, Metron, 2013, 71:157-173.
[45] Valdora M., Yohai V. J., Robust estimators for generalized linear models, J. Stat. Plan. Infer, 2014, 146:31-48.
[46] Wang M. Q., Song L. X., Wang X. G., Bridge estimation for generalized linear models with a diverging number of parameters, Stat. Probab. Lett., 2010, 80:1584-1596.
[47] Wang Y., He S., Zhu L., et al., Asymptotics for a censored generalized linear model with unknown link function, Probab. Theory Relat. Fields, 2007, 138:235-267.
[48] Wu W. B., M-estimation of linear models with dependent errors, Ann. Statist., 2007, 35:495-521.
[49] Wua Y., Liao S., Shyua S., Closed-form valuations of basket options using a multivariate normal inverse Gaussian model, Insurance:Math. Econ., 2009, 44:95-102.
[50] Xiao Z. H., Liu L. Q., Laws of iterated logarithm for quasi-maximum likelihood estimator in generalized linear model, J. Stat. Plan. Infer., 2008, 138:611-617.
[51] Yin C. M., Zhao L. C., Strong consistency of quasi maximum likelihood estimates in generalized linear models, Sci. China, A, 2005, 48(8):1009-1014.
[53] Zhang S. G., Liao Y., On some problems of weak consistency of maximum likelihood estimators in generalized linear models. Sci. China, A, 2008, 51(7):1287-1296.
[53] Zhou Z., Shao X., Inference for linear models with dependent errors, J. R. Statist. Soc. B, 2013, 75:323-343.
国家自然科学基金资助项目(11471105,11471223);湖北师范大学优秀创新团队项目(T201505)
/
〈 |
|
〉 |