调和函数的Lipschitz型空间和Landau-Bloch型定理

陈少林, Miodrag MATELJEVIĆ, Saminathan PONNUSAMY, 王仙桃

数学学报 ›› 2017, Vol. 60 ›› Issue (6) : 1025-1036.

PDF(497 KB)
PDF(497 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (6) : 1025-1036. DOI: 10.12386/A2017sxxb0089
论文

调和函数的Lipschitz型空间和Landau-Bloch型定理

    陈少林1, Miodrag MATELJEVIC2, Saminathan PONNUSAMY3, 王仙桃4
作者信息 +

Lipschitz Type Spaces and Landau-Bloch Type Theorems for Harmonic Functions

    Shao Lin CHEN1, Miodrag MATELJEVIC2, Saminathan PONNUSAMY3, Xian Tao WANG4
Author information +
文章历史 +

摘要

主要研究调和函数和Poisson方程的解的性质.讨论了调和函数的Lipschitz型空间,建立了调和函数的Schwarz-Pick型引理,并利用所得结果证明了与调和Hardy空间有关的一个Landau-Bloch型定理.最后,还利用正规族理论讨论了与Poisson方程的解有关的Landau-Bloch型定理的存在性.

Abstract

We investigate some properties on harmonic functions and solutions to Poisson equations. We will discuss the Lipschitz type spaces on harmonic functions. Secondly, we establish the Schwarz-Pick type lemma for harmonic functions in the unit ball Bn of Rn, and then we apply it to obtain a Landau-Bloch type theorem for harmonic functions in Hardy spaces. At last, we use a normal family argument to extend the Landau-Bloch type theorem to functions which are solutions to Poisson equations.

关键词

Schwarz-Pick型引理 / 调和函数 / Lipschitz型空间 / Poisson方程

Key words

Schwarz-Pick type lemma / harmonic function / Lipschitz type space / Poisson equation

引用本文

导出引用
陈少林, Miodrag MATELJEVIĆ, Saminathan PONNUSAMY, 王仙桃. 调和函数的Lipschitz型空间和Landau-Bloch型定理. 数学学报, 2017, 60(6): 1025-1036 https://doi.org/10.12386/A2017sxxb0089
Shao Lin CHEN, Miodrag MATELJEVIC, Saminathan PONNUSAMY, Xian Tao WANG. Lipschitz Type Spaces and Landau-Bloch Type Theorems for Harmonic Functions. Acta Mathematica Sinica, Chinese Series, 2017, 60(6): 1025-1036 https://doi.org/10.12386/A2017sxxb0089

参考文献

[1] Axler S., Bourdon P., Ramey W., Harmonic Function Theory, Graduate Texts in Mathematics, Vol. 137, Springer, 1992.
[2] Chen H., Gauthier P. M., The landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings, Proc. Amer. Math. Soc., 2011, 139:583-595.
[3] Chen S. L., Ponnusamy S., Wang X. T., Laudan's theorem for p-harmonic mappings in several complex variables, Ann. Polon. Math., 2012, 103:67-87.
[4] Chen S. L., Ponnusamy S., Wang X. T., On planar harmonic Lipschitz and planar harmonic Hardy classes, Ann. Acad. Sci. Fenn. Math., 2011, 36:567-576.
[5] Chen S. L., Ponnusamy S., Wang X. T., Weighted Lipschitz continuity, Schwarz-Pick's lemma and Landau-Bloch's theorem for hyperbolic-harmonic mappings in Cn, Math. Model. Anal., 2013, 18:66-79.
[6] Chen S. L., Ponnusamy S., Rasila A., Lengths, areas and Lipschitz-type spaces of planar harmonic mappings, Nonlinear Anal., 2015, 115:62-70.
[7] Chen S. L., Ponnusamy S., Wang X. T., Harmonic mappings in Bergman spaces, Monatsh. Math., 2013, 170:325-342.
[8] Chen S. L., Ponnusamy S., Vuorinen M., et al., Lipschitz spaces and bounded mean oscilation of harmonic mappings, Bull. Aust. Math. Soc., 2013, 88:143-157.
[9] Chen S. L., Rasila A., Wang X. T., Radial growth, Lipschitz and Dirichlet spaces on solutions to the nonhomogenous Yukawa equation, Israel J. Math., 2014, 204:261-282.
[10] Dyakonov K. M., Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 1997, 178:143-167.
[11] Dyakonov K. M., Holomorphic functions and quasiconformal mappings with smooth moduli, Adv. Math., 2004, 187:146-172.
[12] Fitzgerald C. H., Gong S., The Bloch theorem in several complex variables, J. Geom. Anal., 1996, 4:35-58.
[13] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Vol. 224, 2nd Edition, Springer, 1983.
[14] Holland F., Walsh D., Criteria for membership of Bloch space and its subspace, BMOA, Math. Ann., 1986, 273:317-335.
[15] Krantz S. G., Lipschitz spaces, smoothness of functions, and approximation theory, Expo. Math., 1983, 3:193-260.
[16] Liu X. Y., Bloch functions of several complex variables, Pacific J. Math., 1992, 152:347-363.
[17] Liu X. Y., Minda D., Distortion theorems for Bloch functions, Trans. Amer. Math. Soc., 1992, 333:325-338.
[18] Mateljevi? M., Quasiconformal and quasiregular harmonic analogues of Koebe's theorem and applications, Ann. Acad. Sci. Fenn. Math., 2007, 32:301-315.
[19] Mateljevi? M., Vuorinen M., On harmonic quasiconformal quasi-isometries, J. Inequal. Appl., Volume 2010, Article ID 178732, 19 pages doi:10.1155/2010/1787.
[20] Minda D., Bloch constants, J. Analyse Math., 1982, 41:54-84.
[21] Minda D., Marden constants for Bloch and normal functions, J. Analyse Math., 1982/83, 42:117-127.
[22] Pavlovi? M., Harmonic Schwarz lemmas:Chen. Kalaj-Vuorinen, Pavlovi? Heinz., Preprint.
[23] Pavlovi? M., On Dyakonov's paper equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 1999, 183:141-143.
[24] Pavlovi? M., Introduction to Function Spaces on the Disk, Matemati?ki institut SANU Beograd., Press, 2004.
[25] Pavlovi? M., Lipschitz conditions on the modulus of a harmonic function, Rev. Mat. Iberoam., 2007, 23:831-1845.
[26] Pavlovi? M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb. Math. Soc., 2008, 51:439-441.
[27] Rado T., Reichelderfer P. V., Continuous Transformations in Analysis, Die Grundlehren der Math., Wissenschaften Vol. 75, Spring-Verlag, 1955.
[28] Ren G., Kähler U., Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball, Proc. Edinb. Math. Soc., 2005, 48:743-755.
[29] Takahashi S., Univalent mappings in several complex variables, Ann. Math., 1951, 53:464-471.
[30] Vuorinen M., Conformal Geometry and Quasiregular Mapings, Lecture Notes in Mathematics, 1319, Springer, Berlin, 1988, 209.
[31] Wu H., Normal families of holomorphic mappings, Acta Math., 1967, 119:193-233.

基金

国家自然科学基金(11401184,11571216);湖南省自然科学基金(2015JJ3025);湖南省青年骨干教师培养对象基金(YF1101);“运筹学与控制论”湖南省重点建设学科基金;湖南省科技计划基金(2016TP1020)

PDF(497 KB)

265

Accesses

0

Citation

Detail

段落导航
相关文章

/