
三次高斯和与Kloosterman和的线性递推公式
A Linear Recurrence Formula Involving Cubic Gauss Sums and Kloosterman Sums
应用三角和方法以及高斯和的若干性质,研究三次高斯和与Kloosterman和的一类高次混合均值的计算问题,本文给出该混合均值的一个有趣的线性递推公式.同时,还应用该递推公式,得到三次高斯和与Kloosterman和的高次混合均值的一系列较强的渐近公式.
The main purpose of this paper is using the trigonometric sums method and the properties of Gauss sums to study the computational problem of one kind hybrid power mean involving the cubic Gauss sums and Kloostermann sums, and give an interesting linear recurrence formula for it. As some applications of this recurrence formula, we obtained a series of asymptotic formulas for the high-th hybrid power mean involving the cubic Gauss sums and Kloostermann sums.
三次高斯和 / Kloosterman和 / 高次混合均值 / 线性递推公式 / 渐近公式 {{custom_keyword}} /
the cubic Gauss sums / Kloosterman sums / hybrid power mean / linear recurrence formula / asymptotic formula {{custom_keyword}} /
[1] Apostol T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Berndt B. C., Evans R. J., The detemination of Gauss sums, Bulletin (New Series) of the American Mathematical Society, 1981, 5:107-129.
[3] Chowla S., Cowles J., Cowles M., On the number of zeros of diagonal cubic forms, J. Number Theory, 1977, 9:502-506.
[4] Estermann T., On Kloostermann's sums, Mathematica, 1961, 8:83-86.
[5] Kloosterman H. D., On the representation of numbers in the form ax2+ by2+ cz2+ dt2, Acta Math., 1926, 49:407-464.
[6] Li J. H., Liu Y. N., Some new identities involving Gauss sums and general Kloosterman sums, Acta Mathematica Sinica, Chinese Series, 2013, 56:413-416.
[7] Weil A., On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 1948, 34:204-207.
[8] Zhang H., Zhang W. P., The fourth power mean of two-term exponential sums and its application, Mathematical Reports, 2017, 19:75-83.
[9] Zhang W. P., On the general Kloosterman sums and its fourth power mean, J. Number Theory, 2004, 104:156-161.
[10] Zhang W. P., On the fourth power mean of the general Kloosterman sums, Indian J. Pure and Applied Mathematics, 2004, 35:237-242.
[11] Zhang W. P., Liu H. N., On the general Gauss sums and their fourth power mean, Osaka J. Math., 2005, 42:189-199.
国家自然科学基金资助项目(11371291);陕西省教育厅自然科学专项科研计划项目(16JK1373)
/
〈 |
|
〉 |