Aα2上复合算子的Hilbert-Schmidt差分

张利, 楚秀娇

数学学报 ›› 2018, Vol. 61 ›› Issue (1) : 73-78.

PDF(390 KB)
PDF(390 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (1) : 73-78. DOI: 10.12386/A2018sxxb0007
论文

Aα2上复合算子的Hilbert-Schmidt差分

    张利, 楚秀娇
作者信息 +

Hilbert-Schmidt Differences of Composition Operators on Aα2

    Li ZHANG, Xiu Jiao CHU
Author information +
文章历史 +

摘要

本文设Aα2为定义在n维复空间单位多圆柱上的加权Bergman空间,l为Bergman空间上有界复合算子的全体并赋予算子范数拓扑,应用复合算子的Hilbert-Schmidt差分研究l的拓扑连通性.

Abstract

Let Aα2 be the weighted Bergman space on the unit polydisk, and l the space of all bounded composition operators between Bergman spaces endowed with operator norm, we characterize the topological connection of l using Hilbert-Schmidt differences of two composition operator in this paper.

关键词

Hilbert-Schmidt算子 / 复合算子 / 加权Bergman空间 / 单位多圆柱

Key words

Hilbert-Schmidt operator / composition operator / weighted Bergman space / unit polydisk

引用本文

导出引用
张利, 楚秀娇. Aα2上复合算子的Hilbert-Schmidt差分. 数学学报, 2018, 61(1): 73-78 https://doi.org/10.12386/A2018sxxb0007
Li ZHANG, Xiu Jiao CHU. Hilbert-Schmidt Differences of Composition Operators on Aα2. Acta Mathematica Sinica, Chinese Series, 2018, 61(1): 73-78 https://doi.org/10.12386/A2018sxxb0007

参考文献

[1] Choe B. R., Hosokawa T., Koo H., Hilbert-Schmidt differences of composition operators on the Bergman space, Math. Z., 2011, 269:751-775.
[2] Choe B. R., Koo H., Wang M., Compact double differences of composition operators on the Bergman spaces,J. Funt. Anal., 2017, 272(6):2273-2307.
[3] Choe B. R., Koo H., Park I., Compact differences of composition operators over polydisks, Integr. Equ. Oper. Theory, 2012, 73(1):57-91.
[4] Cowen C., MacCluer B. D., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
[5] Heller K., MacCluer B. D., Weir R. J., Compact differences of composition operators in several variables, Integr. Equ. Oper. Theory, 2011, 69:247-268.
[6] Hosokawa T., Ohno S., Topological structure of the sets of composition operators on the Bloch spaces, J.Math. Anal. Appl., 2006, 314:736-748.
[7] Hosokawa T., Ohno S., Differences of composition operators on the Bloch spaces, J. Oper. Theory, 2007, 57(2):229-242.
[8] MacCluer B. D., Ohno S., Zhao R., Topological structure of the space of composition operators on H∞, Integr. Equ. Oper. Theory, 2001, 40:481-494.
[9] Nieminen P. J., Saksman E., On compactness of the difference of composition operators, J. Math. Anal. Appl., 2004, 298:501-522.
[10] Saukko E., Difference of composition operators between standard weighted Bergman spaces, J. Math. Annl. Appl., 2011, 381:789-798.
[11] Shapiro J., Taylor P. D., Compact, nuclear, and Hilbert-Schmidt composition operators on H2, Indiana Univ. Math. J., 1973, 23:471-496.
[12] Stessin M., Zhu K., Composition operators induced by symbols defined on a polydisk, J. Math. Anal. Appl., 2006, 319:815-829.
[13] Toews C., Topological components of the set of composition operators on H(BN), Integr. Equ. Oper. Theory, 2004, 48:265-280.
[14] Zhang L., Zhou Z., Hilbert-Schmidt differences of composition between the weighted Bergman spaces on the unit ball, Banach J. Math. Anal., 2013, 7(1):160-172.
[15] Zhang L., Zhou Z., Topological structures of the space of composition operators form F (p, q, s) spaces to Bμ space, Taiwanese J. Math., 2014, 18(1):285-304.

基金

国家自然科学基金资助项目(11526116);南阳师范学院校级基金资助项目(ZX2014076)

PDF(390 KB)

Accesses

Citation

Detail

段落导航
相关文章

/