广义分布半群与退化发展方程的分布解
Generalized Distribution Semi-groups and Distributional Solution of Degenerate Evolution Equations
在Banach空间中引进了由有界线性算子引导的广义分布半群的新概念,并讨论了它的有关性质.在我们的方法中,广义分布半群的生成元可以不是稠定的.此外,还引进了退化发展方程在Laplace变换意义下的分布解,应用广义分布半群给出了退化发展方程分布解的构造性表达式.
We introduce a new concept of generalized distribution semi-groups induced by a bounded linear operator in Banach space and discuss the properties of this concept. In our approach, the generator of a generalized distribution semi-group may not be densely defined. Also introduced is the distributional solution of degenerate evolution equation in the sense of Laplace transformation. The constructive expression of the distributional solution for the degenerate evolution equation is given by the generalized distribution semi-group.
广义分布半群 / 分布解 / 退化发展方程 {{custom_keyword}} /
generalized distribution semi-group / distributional solution / degenerate evolution equation {{custom_keyword}} /
[1] Arendt W., El-Mennoui O., Keyantuo V., Local integrated semi-groups:Evolution with jump of regularity, J. Math. Anal. Appl., 1994, 86:572-595.
[2] Banabane M., Emamirad H. A., Smooth distribution groups and Schrodinger equation in Lp(Rn), J. Math. Anal., 1979, 70:61-71.
[3] Banabane M., Emamirad H. A., Jazar M., Spectral distributions and generalizations of Stone's theorem, Acta Appl. Math., 1993, 31:275-295.
[4] Beals R., Semi-groups and abstract Gevrey spaces, J. Funct. Anal., 1972, 10:281-299.
[5] Boccara N., Functional Analysis:An Introduction for Physicists, Academic Press, INC, London, 1990.
[6] Chazarain J., Problémes de Cauchy abstraits et applications à quelques problémes mixtes, J. Funct. Anal., 1971, 7:386-446.
[7] Cioranescu I., Abstract Beurling spaces of class (Mp) and ultradistribution semi-groups, Bull. Sci. Math., 1978, 102:167-192.
[8] Curtain R. F., Zwart H., An Introduction to Infinite Dimensional Linear Systems Theory, Springer, New York, 1995.
[9] Delaubenfelds R., Unbounded holomorphic functional calculus and abstract Cauchy problem for operators with polynomially bounded resolvents, J. Funct. Anal., 1993, 114:348-394.
[10] Delaubenfelds R., Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Mathematics, Vol. 1570, Springer, New York, 1994.
[11] Emamirad H. A., Les semi-groupes distributions de Beurling, C. R. Acad. Sci. Ser. A, 1976, 276:117-119.
[12] Gelfand I. M., Shilov G. E., Generalized Function, Academic Press, New York, 1964.
[13] Kanwal P. R., Generalized Functions, Springer, Berlin, 1998.
[14] Komatsu H., Operational Calculus and Semi-groups of Operators, In Functional Analysis and Related Topics (Kyoto), Springer, Berlin, 1991:213-234.
[15] Kostic M., Regularization of some classes of ultradistribution semi-groups and sines, Publ. Inst. Math. (Beojrad) N. S., 2010, 87:9-37.
[16] Kostic M., Pilipovic S., Ultradistribution semi-groups, Siberian Mathematical Journal, 2012, 53:232-242.
[17] Kostic M., Pilipovic S., Velinov D., Structure theorem for ultradistribution semi-groups, Siberian Mathematical Journal, 2015, 56:83-91.
[18] Kunstmann P. C., Stationary dense operators and generation of non-dense distribution semi-groups, J. Operator Theory, 1997, 37:111-120.
[19] Kunstmann P. C., Distribution semi-groups and abstract Cauchy problems, Trans. Amer. Math. Soc., 1999, 315:837-856.
[20] Lions J. L., Les semi-group distributions, Portugal Math., 1960, 19:141-164.
[21] Melnikova I. V., Anufrieva U. A., Ushkov V. Y., Degenerate distribution semi-groups and well-posedness of the Cauchy problem, Integral Transforms and Special Functions, 1998, 6:247-256.
[22] Mijatovic M., Pilipovic S., Distribution semi-groups on K1, Bull. Cl. Sci. Math. Nat., 2003, 28:7-16.
[23] Sviridyuk G. A. Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semi-groups, Inverse Ill-posed Prob. Ser., Utrecht:VSP, 2003.
[24] Ushijima T., On the generation and smoothness of semi-groups of linear operators, J. Fac. Sci. Univ. Tokyo Sect. IA. Math., 1972, 19:65-126.
[25] Wang S., Quisi-distribution semi-groups and integrated semi-groups, J. Funct. Anal., 1997, 146:352-381.
[26] Xia D. X., Wu Z. R., Yan S. Z., et al., Theory of Real Variables Function and Functional Analysis (in Chinese), Higher Education Press, Beijing, 2010.
国家自然科学基金资助项目(61174081)
/
〈 | 〉 |