全矩阵环上理想包含图的自同构群

陈莉

数学学报 ›› 2018, Vol. 61 ›› Issue (1) : 135-142.

PDF(472 KB)
PDF(472 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (1) : 135-142. DOI: 10.12386/A2018sxxb0013
论文

全矩阵环上理想包含图的自同构群

    陈莉
作者信息 +

Automorphisms of an Inclusion Ideal Graph over a Total Matrix Ring

    Li CHEN
Author information +
文章历史 +

摘要

R是一个环,其上的理想包含图,记为ΓIR),是一个有向图,它以R的非平凡左理想为顶点,从R的左理想I1I2有一条有向边当且仅当I1真包含于I2.环R上的理想关系图,记为ΓiR),也是一个有向图,它以R为顶点集,从R中元素AB有一条有向边当且仅当A生成的左理想真包含于B生成的左理想.设Fq为有限域,其上n阶全矩阵环记为MnFq),本文刻画了环\MnFq)上的理想包含图以及理想关系图的任意自同构.

Abstract

The inclusion ideal graph of a ring R, written as ΓI(R), is a directed graph which has all nontrivial left rings of R as vertex set and there is a directed edge from a vertex I1 to a distinct vertex I2 if and only if I1 is properly contained in I2. In addition, the ideal-relation graph of a ring R, written as Γi(R), is also a directed graph which has R as vertex set and there is a directed edge from a vertex A to a distinct vertex B if and only if the left ideal of R generated by A is properly contained in the left ideal generated by B. Let Fq be a finite field, the set of n×n matrices over Fq be denoted by Mn(Fq). In this paper, both the automorphisms of ΓI(Mn(Fq)) and the automorphisms of Γi(Mn(Fq)) are characterized.

关键词

理想包含图 / 理想关系图 / 图自同构 / 全矩阵环 / 有限域

Key words

inclusion ideal graph / ideal-relation graph / graph automorphism / total matrix ring / finite field

引用本文

导出引用
陈莉. 全矩阵环上理想包含图的自同构群. 数学学报, 2018, 61(1): 135-142 https://doi.org/10.12386/A2018sxxb0013
Li CHEN. Automorphisms of an Inclusion Ideal Graph over a Total Matrix Ring. Acta Mathematica Sinica, Chinese Series, 2018, 61(1): 135-142 https://doi.org/10.12386/A2018sxxb0013

参考文献

[1] Akbari S., Habibi M., Majidinya A., et al., A note on comaximal graph of noncommutative rings, Algebras and Representation Theory, 2013, 16:303-307.
[2] Akbari S., Habibi M., Majidinya A., et al., The inclusion ideal graph of rings, Comm. Algebra, 2015, 43:2457-2465.
[3] Akbari S., Nikandish R., Nikmehr M. J., Some results on the intersection graphs of ideals of rings, J. Algebra Appl., 2013, 1250200,[13pages].
[4] Anderson D. F., Livinston P. S., The zero-divisor graph of a commutative ring, J. Algebra, 1999, 217:434-447.
[5] Chakrabarty I., Ghosh S., Mukherjee T. K., et al., Intersection graphs of ideals of rings, Discrete Math., 2009, 309:5381-5392.
[6] Godsil C., Royle G., Algebraic Graph Theory, Springer-Verlag, New York, 2001.
[7] Han J., The zero-divisor graph under group actions in a noncommutative ring, J. Korean Math. Soc., 2008, 45(6):1647-1659.
[8] Jacobson N., Lectures in Abstract Algebra, Linear Algebra, Vol. 2(Van Nostrand, Princeton, NJ, 1964); Springer-Verlag reprint, 1975.
[9] Ma X. B., Wong D., Automorphism group of an ideal-relation graph over a matrix ring, Linear and Multilinear Algebra, 2016, 64:309-320.
[10] Ma X. B., Wang D. Y., Zhou J. M., Automorphisms of the zero-divisor graph over 2×2 matrices, J. Korean Math. Soc., 2016, 53(3):519-532.
[11] Park S., Han J., The group of graph automorphisms over a matrix ring, J. Korean Math. Soc., 2011, 48(2):301-309.
[12] Sharma P. K., Bhatwadekar S. M., A note on graphical representation of rings, J. Algebra, 1995, 176:124-127.
[13] Wang L., A note on automorphisms on the zero-divisor graph of upper triangular matrices, Linear Algebra Appl., 2015, 465:214-220.
[14] Wong D., Ma X. B., Zhou J. M., The group of automorphisms of a zero-divisor graph based on rank one upper triangular matrices, Linear Algebra Appl., 2014, 460:242-258.

基金

国家自然科学基金资助项目(11571360)

PDF(472 KB)

548

Accesses

0

Citation

Detail

段落导航
相关文章

/