
BMAP的轨道分析和Q过程的伴随MAP
Path Analysis of BMAP and Adjoint MAP of a Q Process
本文用轨道分析方法研究批量Markov到达过程(BMAP),有别于研究BMAP常用的矩阵解析方法.通过BMAP的表现(Dk,k=0,1,2,...),得到BMAP的跳跃概率,证明了BMAP的相过程是时间齐次Markov链,求出了相过程的转移概率和密度矩阵.此外,给定一个带有限状态空间的Q过程J,其跳跃点的计数过程记为N,证明了Q过程J的伴随过程X*=(N,J)是一个MAP,求出了该MAP的转移概率和表现(D0,D1),它们是通过密度矩阵Q来表述的.
This article researches the batch Markov arrival process (BMAP) by using path-analysis method which is different from using conventional matrix analysis method. We are capable of calculating its jumping probability through the representation (Dk, k=0, 1, 2,...) of BMAP, demonstrating the fact that BMAP's phase process is time-homogeneous Markov chain, figuring out the transition probabilities and density matrix of the phase process. Moreover, if we give a Q process J with a finite state space and define the counting process of its jumping points as N, we can demonstrate that adjoint process X*=(N, J) of Q process J is a MAP. The MAP's transition probabilities and representation (D0, D1) are exactly worked out, which are expressed by density matrix Q.
批量Markov到达过程(BMAP) / Markov到达过程(MAP) / 轨道分析 / Q过程 / 伴随过程 {{custom_keyword}} /
batch Markov arrival process (BMAP) / Markov arrival process (MAP) / path analysis / Q process / adjoint process {{custom_keyword}} /
[1] Asmussen S., Koole G., Marked point processes as limits of Markovian arrival streams, J. App. Prob., 1993, 30:365-372.
[2] Artalejo J. R., Gomez-Corral A., He Q. M., Markovian arrivals in stochastic model:a survey and some new results, Statistics and Oper. Res. Trans., 2010, 34(2):101-156.
[3] Chakravarthy S. R., Dudin A. N., A multi-server retrial queue with BMAP arrivals and group services, Queueing Systems, 2002, 42:5-31.
[4] He Q. M., Construction of continuous time Markovian arrivals process, J. Sys. Sci. Sys. Eng., 2010, 19:351-366.
[5] Latouche G., Ramaswami V., Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia PA, 1999.
[6] Lucantoni D. M., Meier-Hellstern K. S., Neuts M. F., A single server queue with server vacations and a class of nonrenewal arrival processes, Advance in Applied Probability, 1990, 22(3):676-705.
[7] Mo X. Y., Zhou J. M., Ou H. et al., Double-Markov risk model, Acta Mathematica Scientia, 2013, 33B(2):764-779.
[8] Neuts M. F., A versatile Markovian point process, J. Appl. Probability, 1979, 16:764-779.
[9] Neuts M. F., Models based on the Markovian arrival process, IEICE Trans. Commun, 1984, E75-B:1255-1265.
[10] Neuts M. F., Matrix-Geometric Solutions in Stochastic Models-An Algorithmic Approach, Baltimore:John Hopkins University press, 1981.
[11] Ramaswami V., The N/G/1 queue and its detailed analysis, Journal Application of Probability, 1980, 12:222-261.
[12] Ramaswami V., Matrix Analytic Methods:A Turorial Overview with some Extensions and New Results, Matrix Analytic Methods in Stochastic Models, 1996.
[13] Srinivas R., Chakravarthy S. R., The Batch Markovian Arrival Process:A Review and Future Work, In Advance in Probability and Stochastic Process, Ed. A. Krisnamoorthy, N. Rajy and V. Ramaswami, Notable Publications, Inc., New Jersey, USA, 2001:21-49.
[14] Srinivas R., Chakravarthy S. R., Markovian Arrival Process, Wiley Encyclopedia of Operations Research an Management Science, Published Online:15 JUN, 2010.
[15] Wang Z. K., General Theory of Stochastic Process (in Chinese), Beijing Normal University Press, vol.1, §4. 4, vol.2, §13.2, Th3,4,5,6, 1996.
[16] Wang H. X., Yang Y. Z., Zhao F., Fang D. F., Markov Risk Process, Appl. Math. Mechan., 2007, 27(8):955-962.
[17] Yang X. Q., The Construction Theory of Denumerable Markov Processes, UK Chichester:Wiley and Sons, CN Changsha:Hu'nan Science and Technology Press, 1990.
国家自然科学基金项目(11671132,11601147);湖南省哲学社会科学基金项目(16YBA053);湖南省教育厅科研基金重点项目(15A032)
/
〈 |
|
〉 |