带有临界增长的Kirchhoff型问题的基态解

沈烈军

数学学报 ›› 2018, Vol. 61 ›› Issue (2) : 197-216.

PDF(656 KB)
PDF(656 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (2) : 197-216. DOI: 10.12386/A2018sxxb0018
论文

带有临界增长的Kirchhoff型问题的基态解

    沈烈军
作者信息 +

Ground State Solutions for Some Kirchhoff Type Problems with Critical Growth in R3

    Lie Jun SHEN
Author information +
文章历史 +

摘要

本文主要考虑如下Kirchhoff问题

其中a,b是正的常数.我们证明了基态解,即上述问题的极小能量解的存在性.同时,如果假定Q ≡ 1,且hx)满足一定的条件,可以证明下述问题

的基态解的存在性.

Abstract

We are concerned with a class of Kirchhoff problem

where a, b > 0 are constants. The existence of ground state solutions, i.e., nontrivial solutions with least possible energy of this Kirchhoff problem is obtained. Moreover, when Q ≡ 1, under suitable conditions on h(x), we prove the existence of ground state solutions for the the following Kirchhoff problem
.

关键词

基态解 / Kirchhoff问题 / 临界增长 / 变分方法

Key words

ground state solutions / Kirchhoff problem / critical growth / variational method

引用本文

导出引用
沈烈军. 带有临界增长的Kirchhoff型问题的基态解. 数学学报, 2018, 61(2): 197-216 https://doi.org/10.12386/A2018sxxb0018
Lie Jun SHEN. Ground State Solutions for Some Kirchhoff Type Problems with Critical Growth in R3. Acta Mathematica Sinica, Chinese Series, 2018, 61(2): 197-216 https://doi.org/10.12386/A2018sxxb0018

参考文献

[1] Alves C. O., Figueiredo G. M., On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in RN, J. Diff. Equ., 2009, 246:1288-1311.
[2] Arosio A., PanizziS., On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 1996, 348:305-330.
[3] Batkam C. J., Multiple sign-changing solutions for Kirchhoff type problems, Electronic J. Diff. Equ., 2016, 2016:1-16.
[4] Benedetto E. D., C1+α local regularity of weak solutions of degenerate results for elliptic equations, Nonlinear Anal., 1983, 7:827-850.
[5] Berestycki H., Lions P. L., Nonlinear scalar field equations I, existence of a ground state, Arch. Ration. Mech. Anal., 1983, 84:313-346.
[6] Bernstein S, Sur une class d'équations fonctionelles aux dérivées partielles, Bull. Acad. Sci. URRS. Sér., 1940, 4:1041-1053.
[7] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36:437-477.
[8] Cavalcanti M. M., Cavalcanti V. N., Soriano J. A., Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Diff. Equ., 2001, 6:701-730.
[9] Chen C. Y., Kuo Y. C., Wu T. F., The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Diff. Equ., 2011, 250:1876-1908.
[10] Chipot M., Lovat B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 1997, 30:4619-4627.
[11] D'Ancona P., Spagnolo S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 1992, 108:247-262.
[12] Ekeland I., Nonconvex minimization problems, Bull. Amer. Math. Soc., 1979, 1:443-473.
[13] Figueiredo G. M., Ikoma N., Junior J. R., Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal., 2014, 213:931-979.
[14] Gazzola F., Lazzarino M., Existence results for general critical growth semilinear ellipitic equations, Commun. Appl. Anal., 2000, 4:39-50.
[15] Guo Z., Ground states for Kirchhoff equations without compact condition, J. Diff. Equ., 2015, 259:2884-2902.
[16] He X., Zou W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3, J. Diff. Equ., 2012, 2:1813-1834.
[17] He Y., Li G., Peng S., Concentrating bound states for Kirchhoff type problems in R3 involving critical Sobolev exponents, Adv. Nonlinear Stud., 2014, 14:441-468.
[18] Huang L., Rocha E., Chen J., Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Diff. Equ., 2013, 255:2463-2483.
[19] Kirchhoff G., Mechanik, Teubner, Leipzig, 1883.
[20] Li G., Some properties of weak solutions of nonlinear scalar fields equation, Ann. Acad. Sci. Fenn. Math., 1989, 14:27-36.
[21] Li G., Ye H., Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3, J. Diff. Equ., 2014, 257:566-600.
[22] Li G., Ye H., Existence of positive solutions for nonlinear Kirchhoff type equations in R3 with critical Sobolev exponent, Math. Meth. Appl. Sci., 2014, 37:2570-2584.
[23] Lions J. L., On some Questions in Boundary Value Problems of Mathematical Physics, in:Contemporary Developments in Continuum Mechanics and Partial Diff. Equ., Proceedings of International Symposium, Inst. Mat. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, in:North-Holland Math. Stud. vol. 30, North-Holland, Amsterdam, 1978:284-346.
[24] Lions P. L., The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1984, 1:109-145.
[25] Lions P. L., The concentration-compactness principle in the calculus of variation. The locally compact case. Part Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1984, 1:223-283.
[26] Liu Z., Guo S., Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 2015, 66:747-769.
[27] Moser J., A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 1960, 13:457-468.
[28] Naimen D., The critical problem of Kirchhoff type elliptic equations in dimension four, J. Diff. Equ., 2014, 257:1168-1193.
[29] Perera K., Zhang Z., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Diff. Equ., 2006, 221:246-255.
[30] Pucci P., Xiang M., Zhang B., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN, Calc. Var. Partial Diff. Equ., 2015, 54:2785-2806.
[31] Ruiz D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237:655-674.
[32] Shen L., Yao X., Multiple positive solutions for a class of Kirchhoff type problem involving general critical growth, arXiv:1607.01923v1.
[33] Shuai W., Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Diff. Equ., 2015, 259:1256-1274.
[34] Tang X., Cheng B., Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Diff. Equ., 2016, 261:2384-2402.
[35] Trudinger N. S., On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 1967, 20:721-747.
[36] Willem M., Minimax Theorems, Birkhäuser, Boston, 1996.
[37] Zhao L., Zhao F., Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 2009, 70:2150-2164.

基金

国家自然科学基金资助项目(11371158);长江学者与创新团队发展计划资助项目(IRT13066)

PDF(656 KB)

387

Accesses

0

Citation

Detail

段落导航
相关文章

/