
四维空间中一类带奇异位势的非局部临界指数问题的正解
Positive Solutions for a Nonlocal Critical Problem with Singular Weight in Dimension Four
本文研究了如下非局部临界指数问题
其中Ω⊂R4是一个有界光滑区域且0 ∈ Ω,a≥0,b,λ,μ > 0,1 < q < 2,0 < β < 2.利用变分方法,我们获得了一些存在性与多重性结果.
We are interested in considering the following nonlocal critical problem
where Ω ⊂ R4 is a smooth bounded domain with 0 ∈ Ω, a ≥ 0, b, λ, μ > 0, 1 < q < 2, 0 < β < 2. By using the variational method, some existence and multiplicity results are obtained.
非局部问题 / 临界指数 / 正解 / 变分方法 {{custom_keyword}} /
Nonlocal problem / critical exponent / positive solutions / variational method {{custom_keyword}} /
[1] Alves C. O., Corrêa F. J. S. A., Figueiredo G. M., On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 2010, 2(3):409-417.
[2] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14:349-381.
[3] Anello G., A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem, J. Math. Anal. Appl., 2011, 373(1):248-251.
[4] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 1995, 2(4):553-572.
[5] Brézis H., Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 1983, 88(3):486-490.
[6] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure. Appl. Math., 1983, 36(4):437-477.
[7] Chen C. Y., Kuo Y. C., Wu T. F., The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations, 2011, 250(4):1876-1908.
[8] Cheng B. T., New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl., 2012, 394(2):488-495.
[9] Figueiredo G. M., Existence of a positive for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 2013, 401(2):706-713.
[10] Huang Y. S., Liu Z., Wu Y. Z., On finding solutions of a Kirchhoff type problem, Proc. Amer. Math. Soc., 2016, 144(7):3019-3033.
[11] Kirchhoff G., Mechanik, Teubner, Leipzig, 1883.
[12] Lei C. Y., Liu G. S., Guo L. T., Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity, Nonlinear Anal. Real World Appl., 2016, 31:343-355.
[13] Lei C. Y., Chu C. M., Suo H. M., et al., On Kirchhoff type problems involving critical and singular nonlinearities, Ann. Polon. Math., 2015, 114(3):269-291.
[14] Li H. Y., Liao J. F., Existence and multiplicity of solutions for a superlinear Kirchhoff-type equations with critical Sobolev exponent in RN, Comput. Math. Appl., 2016, 72(12):2900-2907.
[15] Lions J. L., On Some Questions in Boundary Value Problems of Mathematical Physics, Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro), 1977:284-346.
[16] Liu R. Q., Tang C. L., Liao J. F., et al., Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four, Commun. Pure Appl. Anal., 2016, 15(5):1841-1856.
[17] Ma T. F., Muñoz Rivera J. E., Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett., 2003, 16(2):243-248.
[18] Naimen D., The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations, 2014, 257(4):1168-1193.
[19] Sun Y. J., Liu X., Existence of positive solutions for Kirchhoff type problems with critical exponent, J. Partial Differ. Equ., 2012, 25(2):187-198.
[20] Willem M., Minimax Theorems, Birkäuser, Boston, 1996.
[21] Zhang J., The Kirchhoff type Schrödinger problem with critical growth, Nonlinear Anal. Real World Appl., 2016, 28:153-170.
西华师范大学博士启动资金项目(16E014);贵州省教育厅创新群体重大研究项目(KY[2016]046);贵州省科技厅联合基金项目(LH[2016]7033)
/
〈 |
|
〉 |