多重星体的Lp-对偶混合几何表面积及其相关不等式

闫丽, 王卫东

数学学报 ›› 2018, Vol. 61 ›› Issue (2) : 273-288.

PDF(510 KB)
PDF(510 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (2) : 273-288. DOI: 10.12386/A2018sxxb0023
论文

多重星体的Lp-对偶混合几何表面积及其相关不等式

    闫丽, 王卫东
作者信息 +

The Lp-Dual Mixed Geominimal Surface Areas of Multiple Star Bodies and Related Inequalities

    Li YAN Wei, Dong WANG
Author information +
文章历史 +

摘要

叶德平等人介绍了任意实数pp≠-n)的多重凸体的Lp-混合几何表面积.本文给出了关于任意实数ppn)的多重星体的Lp-对偶混合几何表面积的概念,并且建立了一些相关不等式.

Abstract

Ye etc introduced the Lp-mixed geominimal surface areas of multiple convex bodies for any real p(p≠-n). In this paper, we define the Lp-dual mixed geominimal surface areas of multiple star bodies for any real p(pn), and establish some inequalities related to this concept.

关键词

Lp-混合几何表面积 / 多重凸体 / Lp-对偶混合几何表面积 / 多重星体

Key words

Lp-mixed geominimal surface area / multiple convex bodies / Lp-dual mixed geominimal surface area / multiple star bodies

引用本文

导出引用
闫丽, 王卫东. 多重星体的Lp-对偶混合几何表面积及其相关不等式. 数学学报, 2018, 61(2): 273-288 https://doi.org/10.12386/A2018sxxb0023
Li YAN Wei, Dong WANG. The Lp-Dual Mixed Geominimal Surface Areas of Multiple Star Bodies and Related Inequalities. Acta Mathematica Sinica, Chinese Series, 2018, 61(2): 273-288 https://doi.org/10.12386/A2018sxxb0023

参考文献

[1] Feng Y. B., Wang W. D., Lp-dual mixed geominimal surface area, Glasgow. Math. J., 2014, 56:229-239.
[2] Firey W. J., p-Means of convex bodies, Math. Scand., 1962, 10:17-24.
[3] Gardner R. J., Geometric Tomography, 2nd edn, Cambridge Univ. Press, Cambridge, 2006.
[4] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambrige University Press, Cambrige, 1959.
[5] Li N., Zhu B. C., Mixed brightness-integrals of convex bodies, J. Korean Math. Soc., 2010, 47(5):935-945.
[6] Li Y. N., Wang W. D., The Lp-dual mixed geominimal surface area for multiple star bodies, J. Inequal. Appl., 2014(2014):456.
[7] Lutwak E., The Brunn-Minkowski-Firey theory I:mixed volumes and the minkowski problem, J. Differential Geom., 1993, 38:131-150.
[8] Lutwak E., The Brunn-Minkowski-Firey theory Ⅱ:affine and geominimal surface areas, Adv. Math., 1996, 118:244-294.
[9] Petty C. M., Geominimal surface area, Geom. Dedicata., 1974, 3(1):77-97.
[10] Petty C. M., Affine isoperimetric problems, Ann. New York Acad Sci., 1985, 440(1):113-127.
[11] Schneider R., Affine surface area and convex bodies of elliptic type, Periodica Mathematica Hungarica, 2014, 69(2):120-125.
[12] Schneider R., Convex Bodies:The Brunn-Minkowski theory, 2nd edn, Cambridge University Press, Cambridge, 2014.
[13] Wang W. D., Feng Y. B., A general Lp-version of Petty's affine projection inequality, Taiwan. J. Math., 2013, 17(2):517-528.
[14] Wang W. D., Qi C., Lp-dual geominimal surface area, J. Inequal. Appl., 2011(2011):6.
[15] Yan L., Wang W. D., Lp-dual mixed geominimal surface areas, J. Nonlinear Sci. Appl., 2016, 9(3):1143-1152.
[16] Ye D. P., On the Lp geominimal surface area and their inequalities, Int. Math. Res. Not., 2015, 2014(9). 31pages.
[17] Ye D. P., Zhu B. C., Zhou J. Z., The mixed Lp geominimal surface areas for multiple convex bodies, Indiana Univ. Math. J., 2015, 64(5):1513-1552.
[18] Zhu B. C., Li N., Zhou J. Z., Isoperimetric inequalities for Lp geominimal surface area, Glasgow Math. J., 2011, 53:717-726.
[19] Zhu B. C., Zhou J. Z., Xu W. X., Affine isoperimetric inequalities for Lp geominimal surface area, Springer Proc. Math. Stat., 2014, 106:167-176.

基金

国家自然科学基金资助项目(11371224)

PDF(510 KB)

Accesses

Citation

Detail

段落导航
相关文章

/