分数扩散测度的分部积分公式及鞅表示定理

孙晓霞

数学学报 ›› 2018, Vol. 61 ›› Issue (2) : 327-336.

PDF(448 KB)
PDF(448 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (2) : 327-336. DOI: 10.12386/A2018sxxb0028
论文

分数扩散测度的分部积分公式及鞅表示定理

    孙晓霞
作者信息 +

On the Integration by Parts Formula and Martingale Representation of Fractional Diffusion Measure

    Xiao Xia SUN
Author information +
文章历史 +

摘要

本文研究由分数扩散过程决定的测度(分数扩散测度)的随机分析理论.首先,利用Bismut方法给出拉回公式,得到了分数扩散测度的分部积分公式.进一步,利用此公式,将Wiener测度下的经典的鞅表示定理推广到分数扩散测度下的鞅表示定理.

Abstract

We study the stochastic analysis of the measure determined by fractional diffusion process (fractional diffusion measure). We first give the pull back formula by Bismut method, then establish the integration by parts formula for fractional diffusion measure. Finally, we generalize the classic Clark-Ocone theorem to martingale representation theorem under fractional diffusion measure.

关键词

分数扩散测度 / 分部积分公式 / 鞅表示定理

Key words

fractional diffusion measure / integration by parts formula / martingale representation

引用本文

导出引用
孙晓霞. 分数扩散测度的分部积分公式及鞅表示定理. 数学学报, 2018, 61(2): 327-336 https://doi.org/10.12386/A2018sxxb0028
Xiao Xia SUN. On the Integration by Parts Formula and Martingale Representation of Fractional Diffusion Measure. Acta Mathematica Sinica, Chinese Series, 2018, 61(2): 327-336 https://doi.org/10.12386/A2018sxxb0028

参考文献

[1] Aida S., Differential calculus on path and loop spaces Ⅱ:Irreducibility of dirichlet forms on loop spaces, Bulletin des Sciences Mathématiques, 1998, 122(8):635-666.
[2] Capitaine M., Hsu E. P., Ledoux M., Martingale representation and a simple proof of Logarithmic Sobolev inequalities on path spaces, Electronic Communications in Probability, 1997, 2:71-81.
[3] Decreusefond L., Üstünel A. S., Stochastic analysis of the fractional Brownian motion, Potential Analysis, 1999, 10(2):177-214.
[4] Driver B. K., A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, Journal of Functional Analysis, 1992, 110(2):272-376.
[5] Driver B. K., A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold, Transactions of the American Mathematical Society, 1994, 342(1):375-395.
[6] Duncan T. E., Hu Y. Z., Pasik-Duncan B., Stochastic calculus for fractional Brownian motion I. Theory, SIAM Journal on Control and Optimization, 2000, 38(2):582-612.
[7] Enchev O., Stroock D. W., Pinned Brownian motion and its perturbations, Advances in Mathematics, 1996, 119(2):127-154.
[8] Fang S. Z., Malliavin P., Stochastic analysis on the path space of a Riemannian manifold:I. Markovian stochastic calculus, Journal of Functional Analysis, 1993, 118(1):249-274.
[9] Gong F. Z., Ma Z. M., The Log-Sobolev inequality on loop space over a compact Riemannian manifold, Journal of Functional Analysis, 1998, 157:599-623.
[10] Hsu E. P., Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, Journal of Functional Analysis, 1995, 134(2):417-450.
[11] Hsu E. P., Integration by parts in loop spaces, Mathematische Annalen, 1997, 309(2):331-339.
[12] Hsu E. P., Stochastic Analysis on Manifolds, American Mathematical Society, New York, 2002.
[13] Nualart D., Ouknine Y., Regularization of differential equations by fractional noise, Stochastic Processes and their Applications, 2002, 102(1):103-116.
[14] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives:Theory and Applications, Gordon and Breach Science, New York, 1993.
[15] Sun X. X., Guo F., Martingale representation and logarithmic-sobolev inequality for fractional ornstein-uhlenbeck measure, 2016, arXiv:1512.03545.
[16] Sun X. X., Guo F., On integration by parts formula and characterization of fractional Ornstein-Uhlenbeck process, Statistics and Probability Letters, 2015, 107(5):170-177.

基金

国家自然科学基金资助项目(11401074);东北财经大学校级资助项目(DUFE2015Q23)

PDF(448 KB)

407

Accesses

0

Citation

Detail

段落导航
相关文章

/