稳定积分的弱收敛

周力凯, 林正炎, 王汉超

数学学报 ›› 2018, Vol. 61 ›› Issue (3) : 477-484.

PDF(476 KB)
PDF(476 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (3) : 477-484. DOI: 10.12386/A2018sxxb0041
论文

稳定积分的弱收敛

    周力凯1, 林正炎2, 王汉超3
作者信息 +

Weak Convergence of Stable Integrals

    Li Kai ZHOU1, Zheng Yan LIN2, Han Chao WANG3
Author information +
文章历史 +

摘要

令{XXn ≥ 1}是一列严平稳的随机变量,且其分布F在一个α-稳定分布的吸引场,这里0 < α < 1.本文考虑∑i=1nfnβ,i/n)(Xi)/(an)的弱收敛性.不同于经典意义下的随机过程弱收敛,本文将∑i=1nfnβ,i/n)(Xi)/(an)看作β变化的随机元,利用点过程收敛方法得到了其弱收敛性.

Abstract

Let {X; Xn ≥ 1} be a strictly random variable series, and its distribution F in a α-stable distribution attracting field, where 0 < α < 1. In this paper, we consider the weak convergence of ∑i=1nfn(β, i/n)(Xi)/(an). Different from the classical weak convergence, ∑i=1nfn(β, i/n)(Xi)/(an) are regarded as a random elements with respect to β's change, and its weak convergence is obtained by using the point process convergence method.

关键词

M1-拓扑 / 弱收敛 / 点过程 / &alpha / -稳定分布

Key words

M1-topology / weak convergence / point process / α-stable distribution

引用本文

导出引用
周力凯, 林正炎, 王汉超. 稳定积分的弱收敛. 数学学报, 2018, 61(3): 477-484 https://doi.org/10.12386/A2018sxxb0041
Li Kai ZHOU, Zheng Yan LIN, Han Chao WANG. Weak Convergence of Stable Integrals. Acta Mathematica Sinica, Chinese Series, 2018, 61(3): 477-484 https://doi.org/10.12386/A2018sxxb0041

参考文献

[1] Basrak B., Krizmanic D., Segers J., A functional limit theorem for dependent sequences with infinite variance stable limits, The Annals of Probability, 2012, 40:2008-2033.
[2] Billingsley P., Convergence of Probability Measures, John Wiley and Sons, New York, 2013.
[3] Davis R., Mikosch T., The sample autocorrelations of heavy-tailed processes with applications to ARCH, The Annals of Statistics, 1998, 26:2049-2080.
[4] Davis R., Song L., Functional convergence of stochastic integrals with application to statistical inference, Stochastic Processes and Their Applications, 2012, 122:725-757.
[5] Kasahara Y., Maejima M., Functional limit theorems for weighted sums of iid random variables, Probability Theory and Related Fields, 1986, 72:161-183.
[6] Kasahara Y., Maejima M., Weighted sums of iid random variables attracted to integrals of stable processes, Probability Theory and Related Fields, 1988, 78:75-96.
[7] Mikosch T., Resnick S., Samorodnitsky G., The maximum of the periodogram for a heavy-tailed sequence, The Annals of Probability, 2000, 28:431-478.
[8] Resnick S., Weak convergence to extremal processes, Advances in Applied Probability, 1975, 5:951-960.
[9] Resnick S., Point processes, regular variation and weak convergence, Advances in Applied Probability, 1986, 18:66-138.
[10] Resnick S., Heavy-tail Phenomena:Probabilistic and Statistical Modeling, Springer Science and Business Media, New York, 2007.
[11] Samorodnitsky G., Taqqu M., Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance, Chapman Hall, New York, 1994.
[12] Skorokhod A., Limit theorems for stochastic processes (Russian), Theory of Probability and its Applications, 1956, 1:261-290.

基金

国家自然科学基金(11701331);山东省自然科学基金(ZR2017QA007);山东大学基本科研业务费(2016GN019);浙江省自然科学基金(LQ18A010006);浙江省一流学科A类(浙江财经大学统计学)资助(Z0111116008/013);浙江省教育厅科研项目资助(Y201635727)

PDF(476 KB)

430

Accesses

0

Citation

Detail

段落导航
相关文章

/