函数域常值域扩张的类数整除性

赵正俊, 孙广人

数学学报 ›› 2018, Vol. 61 ›› Issue (4) : 585-590.

PDF(483 KB)
PDF(483 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (4) : 585-590. DOI: 10.12386/A2018sxxb0052
论文

函数域常值域扩张的类数整除性

    赵正俊, 孙广人
作者信息 +

On the Divisibility of Class Number in Constant Extensions of Algebraic Function Fields

    Zheng Jun ZHAO, Guang Ren SUN
Author information +
文章历史 +

摘要

K/Fq是亏格大于0的整体函数域,Kn:=KFqnK上的n次常值域扩张.利用整体函数域zeta函数的整系数多项式的有理表达式,结合函数域常值域扩张的基本性质,对于满足特定条件的素数l,本文讨论了使得除子类群Pic0Kn)的Sylow-l子群为非平凡群的常值域扩张Kn的存在性.

Abstract

Let K/Fq be a global function field over finite field Fq with genus greater than 0. Suppose that Kn:=KFqn is a constant field extension of K with degree n. Together the rational expression for zeta function of K with the properties of constant field extensions, for a specified prime number l, we study in this paper the existence of constant field extension Kn/K with l dividing the order of group Pic0(Kn), which is the group of divisor classes of degree zero of function field Kn.

关键词

函数域 / 除子 / 类数

Key words

function fields / divisor / class number

引用本文

导出引用
赵正俊, 孙广人. 函数域常值域扩张的类数整除性. 数学学报, 2018, 61(4): 585-590 https://doi.org/10.12386/A2018sxxb0052
Zheng Jun ZHAO, Guang Ren SUN. On the Divisibility of Class Number in Constant Extensions of Algebraic Function Fields. Acta Mathematica Sinica, Chinese Series, 2018, 61(4): 585-590 https://doi.org/10.12386/A2018sxxb0052

参考文献

[1] Bilhan M., Buyruk D., Özbudak F., Classification of function fields with class number three, J. Pure Appl. Alge., 2015, 219(11):5097-5116.
[2] Eichler M., Introduction to the Theory of Algebraic Numbers and Functions, Pure and Appl. Math., Vol. 23, Academic Press, New York, 1966.
[3] Hasse H., Zur Theorie der abstrakten elliptischen Funktionenkörper, J. Rie. Angew. Math., 1936, 175:55-62.
[4] Ji Q. Z., Qin H. R., Higher K-groups of smooth projective curves over finite fields, Finite Fields Appl., 2012, 18:645-660.
[5] Leitzel J. R. C., Galois cohomology and class number in constant extensions of algebraic function fields, Proc. Amer. Math. Soc., 1969, 22(1):206-208.
[6] Leitzel J. R. C., Class number in constant extensions of elliptic function fields, Proc. Amer. Math. Soc., 1970, 25(1):183-188.
[7] Leitzel J. R. C., Madan M. L., Queen C. S., Algebraic function fields with small class number, J. Number Theory, 1975, 7(1):11-27.
[8] Mercuri P., Stirpe C., Classification of algebraic function fields with class number one, J. Number Theory, 2015, 154:365-374.
[9] Rosen M., Number Theory in Function Fields, Grad. Texts in Math., Vol. 210, Springer-Verlag, New York, 2002.
[10] Shen Q. B., Shi S. H., Function fields of class number one, J. Number Theory, 2015, 154:375-379.
[11] Stichtennoth H., Algebraic Function Fields and Codes, Grad. Texts in Math., Vol. 254, Springer-Verlag, Berlin, 2009.
[12] Stirpe C., A counterexample to "Algebraic function fields with small class number", J. Number Theory, 2014, 143:402-404.

基金

国家自然科学基金资助项目(11601009);安徽省自然科学基金资助项目(1608085QA04)

PDF(483 KB)

396

Accesses

0

Citation

Detail

段落导航
相关文章

/