
函数域常值域扩张的类数整除性
On the Divisibility of Class Number in Constant Extensions of Algebraic Function Fields
设K/Fq是亏格大于0的整体函数域,Kn:=KFqn是K上的n次常值域扩张.利用整体函数域zeta函数的整系数多项式的有理表达式,结合函数域常值域扩张的基本性质,对于满足特定条件的素数l,本文讨论了使得除子类群Pic0(Kn)的Sylow-l子群为非平凡群的常值域扩张Kn的存在性.
Let K/Fq be a global function field over finite field Fq with genus greater than 0. Suppose that Kn:=KFqn is a constant field extension of K with degree n. Together the rational expression for zeta function of K with the properties of constant field extensions, for a specified prime number l, we study in this paper the existence of constant field extension Kn/K with l dividing the order of group Pic0(Kn), which is the group of divisor classes of degree zero of function field Kn.
函数域 / 除子 / 类数 {{custom_keyword}} /
function fields / divisor / class number {{custom_keyword}} /
[1] Bilhan M., Buyruk D., Özbudak F., Classification of function fields with class number three, J. Pure Appl. Alge., 2015, 219(11):5097-5116.
[2] Eichler M., Introduction to the Theory of Algebraic Numbers and Functions, Pure and Appl. Math., Vol. 23, Academic Press, New York, 1966.
[3] Hasse H., Zur Theorie der abstrakten elliptischen Funktionenkörper, J. Rie. Angew. Math., 1936, 175:55-62.
[4] Ji Q. Z., Qin H. R., Higher K-groups of smooth projective curves over finite fields, Finite Fields Appl., 2012, 18:645-660.
[5] Leitzel J. R. C., Galois cohomology and class number in constant extensions of algebraic function fields, Proc. Amer. Math. Soc., 1969, 22(1):206-208.
[6] Leitzel J. R. C., Class number in constant extensions of elliptic function fields, Proc. Amer. Math. Soc., 1970, 25(1):183-188.
[7] Leitzel J. R. C., Madan M. L., Queen C. S., Algebraic function fields with small class number, J. Number Theory, 1975, 7(1):11-27.
[8] Mercuri P., Stirpe C., Classification of algebraic function fields with class number one, J. Number Theory, 2015, 154:365-374.
[9] Rosen M., Number Theory in Function Fields, Grad. Texts in Math., Vol. 210, Springer-Verlag, New York, 2002.
[10] Shen Q. B., Shi S. H., Function fields of class number one, J. Number Theory, 2015, 154:375-379.
[11] Stichtennoth H., Algebraic Function Fields and Codes, Grad. Texts in Math., Vol. 254, Springer-Verlag, Berlin, 2009.
[12] Stirpe C., A counterexample to "Algebraic function fields with small class number", J. Number Theory, 2014, 143:402-404.
国家自然科学基金资助项目(11601009);安徽省自然科学基金资助项目(1608085QA04)
/
〈 |
|
〉 |