Dirichlet空间上的Bergman型Toeplitz算子

秦杰, 黄穗

数学学报 ›› 2018, Vol. 61 ›› Issue (4) : 619-624.

PDF(387 KB)
PDF(387 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (4) : 619-624. DOI: 10.12386/A2018sxxb0056
论文

Dirichlet空间上的Bergman型Toeplitz算子

    秦杰, 黄穗
作者信息 +

The Bergman-Type Toeplitz Operator on Dirichlet Space

    Jie QIN, Sui HUANG
Author information +
文章历史 +

摘要

本文给出了Dirichlet空间上以有界调和函数为符号的Bergman型Toeplitz算子是紧算子的充要条件.同时刻画了此类Bergman型Toeplitz算子在Dirichlet空间上的交换性.

Abstract

We give sufficient and necessary conditions for Bergman-type Toeplitz operators on Dirichlet space with bounded harmonic symbols to be a compact operator. And we characterize commuting Bergman-type Toeplitz operators with harmonic symbols on Dirichlet space.

关键词

Dirichlet空间 / Bergman型Toeplitz算子 / 紧算子 / 交换性

Key words

Dirichlet space / Bergman-type Toeplitz operator / compact / commuting

引用本文

导出引用
秦杰, 黄穗. Dirichlet空间上的Bergman型Toeplitz算子. 数学学报, 2018, 61(4): 619-624 https://doi.org/10.12386/A2018sxxb0056
Jie QIN, Sui HUANG. The Bergman-Type Toeplitz Operator on Dirichlet Space. Acta Mathematica Sinica, Chinese Series, 2018, 61(4): 619-624 https://doi.org/10.12386/A2018sxxb0056

参考文献

[1] Douglas R. G., Banach Algebra Techniques in Operator Theory (2nd ed.), Springer-Verlag, Berlin, 2012.
[2] Zhu K., Operator Theory in Function Space, Marcel Dekker, Inc., New York, 1990.
[3] Miao J., Zheng D. C., Compact operator on Bergman space, Integral Equ. Oper. Theory, 2004, 48:61-79.
[4] Axler S., ?u?kovi? Z., Commuting toeplitz operator with harmonic symbols, Integral Equ. Oper. Theory, 1991, 14:1-12.
[5] Cao G. F., Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math., 1999, 188:209-224.
[6] Duistermaat J. J., Lee Y. J., Toeplitz operators on Dirichlet space, J. Math. Anal. Appl., 2004, 300:54-67.
[7] Yu T., ToepLitz operator on the Dirichlet Space, Integral Equ. Oper. Theory, 2010, 67:163-170.
[8] Chen Y., Lee Y. J., Nguyen Q. D., Algebraic properties of Toeplitz operators on the harmonic Dirichlet space, Integral Equ. Oper. Theory, 2011, 69:183-201.
[9] Chartrand R., Toeplitz operators on Dirichlet-type spaces, J. Operator Theory, 2002, 48:3-13.

基金

国家自然科学基金资助项目(11501068);重庆市教委项目(cstc2015jcyjA00005,KJ1600302);重庆师范大学研究生科研创新项目(YKC17010)

PDF(387 KB)

253

Accesses

0

Citation

Detail

段落导航
相关文章

/