
Dirichlet空间上的Bergman型Toeplitz算子
The Bergman-Type Toeplitz Operator on Dirichlet Space
本文给出了Dirichlet空间上以有界调和函数为符号的Bergman型Toeplitz算子是紧算子的充要条件.同时刻画了此类Bergman型Toeplitz算子在Dirichlet空间上的交换性.
We give sufficient and necessary conditions for Bergman-type Toeplitz operators on Dirichlet space with bounded harmonic symbols to be a compact operator. And we characterize commuting Bergman-type Toeplitz operators with harmonic symbols on Dirichlet space.
Dirichlet空间 / Bergman型Toeplitz算子 / 紧算子 / 交换性 {{custom_keyword}} /
Dirichlet space / Bergman-type Toeplitz operator / compact / commuting {{custom_keyword}} /
[1] Douglas R. G., Banach Algebra Techniques in Operator Theory (2nd ed.), Springer-Verlag, Berlin, 2012.
[2] Zhu K., Operator Theory in Function Space, Marcel Dekker, Inc., New York, 1990.
[3] Miao J., Zheng D. C., Compact operator on Bergman space, Integral Equ. Oper. Theory, 2004, 48:61-79.
[4] Axler S., ?u?kovi? Z., Commuting toeplitz operator with harmonic symbols, Integral Equ. Oper. Theory, 1991, 14:1-12.
[5] Cao G. F., Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math., 1999, 188:209-224.
[6] Duistermaat J. J., Lee Y. J., Toeplitz operators on Dirichlet space, J. Math. Anal. Appl., 2004, 300:54-67.
[7] Yu T., ToepLitz operator on the Dirichlet Space, Integral Equ. Oper. Theory, 2010, 67:163-170.
[8] Chen Y., Lee Y. J., Nguyen Q. D., Algebraic properties of Toeplitz operators on the harmonic Dirichlet space, Integral Equ. Oper. Theory, 2011, 69:183-201.
[9] Chartrand R., Toeplitz operators on Dirichlet-type spaces, J. Operator Theory, 2002, 48:3-13.
国家自然科学基金资助项目(11501068);重庆市教委项目(cstc2015jcyjA00005,KJ1600302);重庆师范大学研究生科研创新项目(YKC17010)
/
〈 |
|
〉 |