空间Sierpinski垫上的五元素正交指数系

张佳妮, 李建林, 王琦

数学学报 ›› 2018, Vol. 61 ›› Issue (4) : 625-630.

PDF(443 KB)
PDF(443 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (4) : 625-630. DOI: 10.12386/A2018sxxb0057
论文

空间Sierpinski垫上的五元素正交指数系

    张佳妮, 李建林, 王琦
作者信息 +

The Five-element Orthogonal Exponentials on the Spatial Sierpinski Gasket

    Jia Ni ZHANG, Jian Lin LI, Qi WANG
Author information +
文章历史 +

摘要

p1p2p3∈Z\{0,±1},e1,e2,e3是R3上标准的单位正交基.由扩张矩阵M=diag[p1p2p3]和数字集D={0,e1,e2,e3}确定的自仿测度μM,D是支撑在空间Sierpinski垫TM,D)上,其对应的Hilbert空间L2}(μM,D)上正交指数系的有限性与无限性问题已经解决.在有限的情形下,空间L2}(μM,D)上正交指数系基数的最佳上界为"4"的猜测还未完全解决.本文构造出了此空间上一列五元素正交指数函数系,说明上述最佳上界为"4"的猜测是错误的.

Abstract

Let p1, p2, p3Z\{0, ±1} and e1, e2, e3 be the standard basis of unit column vectors in R3. The self-affine measure μM,D associated with an expanding matrix M=diag[p1, p2, p3] and a digit set D={0, e1, e2, e3} is supported on the spatial Sierpinski gasket T (M, D). It is known that the finiteness or infiniteness of orthogonal exponentials in the corresponding Hilbert space L2(μM,D) has been solved completely. In the finite case, it is conjectured that the cardinality of orthogonal exponentials in L2(μM,D) is at most "4", where the number 4 is the best upper bound. That is, all the four-element orthogonal exponentials are the maximum. In the present paper, we construct a class of the five-element orthogonal exponentials in the Hilbert space L2(μM,D), which shows that the above conjecture is false.

关键词

自仿测度 / 正交指数系 / 非谱性 / 数字集

Key words

self-affine measure / orthogonal exponentials / non-spectrality / digit set

引用本文

导出引用
张佳妮, 李建林, 王琦. 空间Sierpinski垫上的五元素正交指数系. 数学学报, 2018, 61(4): 625-630 https://doi.org/10.12386/A2018sxxb0057
Jia Ni ZHANG, Jian Lin LI, Qi WANG. The Five-element Orthogonal Exponentials on the Spatial Sierpinski Gasket. Acta Mathematica Sinica, Chinese Series, 2018, 61(4): 625-630 https://doi.org/10.12386/A2018sxxb0057

参考文献

[1] Dutkay D. E., Jorgensen P. E. T., Analysis of orthogonality and of orbits in affine iterated function systems, Math Z., 2007, 256:801-823.
[2] Hutchinson J. E., Fractals and self-similarity, India Univ. Math. J., 1981, 30:713-747.
[3] Jorgensen P. E. T., Pedersen S., Harmonic analysis of fractal measures, Constr. Approx. J., 1996, 12:1-30.
[4] Jorgensen P. E. T., Pedersen S., Dense analytic subspaces in fractal L2-spaces, J. Anal. Math., 1998, 75:185-228.
[5] Li J. L., Spectral self-affine measures in Rn, Proc. Edinburgh Math. Soc., 2007, 50:197-215.
[6] Li J. L., Spectrality of self-affine measures on the three-dimensional Sierpinski gasket, Proc. Edinburgh Math. Soc., 2012, 55(2):477-496.
[7] Li J. L., Spectral self-affine measures on the spatial Sierpinski gasket, Monatsh. Math., 2015, 176:293-322.
[8] Li J. L., Non-spectrality of self-affine measures on the spatial Sierpinski gasket, J. Math. Anal. Appl., 2015, 432:1005-1017.
[9] Strichartz R., Remarks on "Dense analytic subspaces in fractal L2-spaces", J. Anal. Math., 1998, 75(1):229-231.
[10] Strichartz R., Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 2000, 81(1):209-238.
[11] Wang Q., Li J. L., Spectrality of certain self-affine measures on the generalized spatial Sierpinski gasket, Math. Nachr., 2016, 289(7):895-909.

基金

国家自然科学基金资助项目(11571214);中央高校基本科研业务费专项基金(GK201601004)

PDF(443 KB)

268

Accesses

0

Citation

Detail

段落导航
相关文章

/