变指标中心BMO空间

王定怀, 刘宗光, 周疆, 滕志东

数学学报 ›› 2018, Vol. 61 ›› Issue (4) : 641-650.

PDF(486 KB)
PDF(486 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (4) : 641-650. DOI: 10.12386/A2018sxxb0059
论文

变指标中心BMO空间

    王定怀1, 刘宗光2, 周疆1, 滕志东1
作者信息 +

Central BMO Spaces with Variable Exponent

    Ding Huai WANG1, Zong Guang LIU2, Jiang ZHOU1, Zhi Dong TENG1
Author information +
文章历史 +

摘要

本文引进变指标中心有界平均振荡函数空间.作为应用,得到了Hardy算子及其共轭算子的交换子在变指标勒贝格空间上有界性的特征刻画.另外,还考虑了交换子在变指标Herz空间上的向量值不等式.

Abstract

In this paper, the central BMO spaces with variable exponent are introduced. As an application, we characterize these spaces by the boundedness of commutators of Hardy operator and its dual operator on variable Lebesgue spaces. The boundedness of vector-valued commutators on Herz spaces with variable exponent are also considered.

关键词

中心BMO空间 / 特征刻画 / 交换子 / Hardy算子 / 变指标

Key words

central BMO space / characterize / commutator / Hardy operator / variable exponent

引用本文

导出引用
王定怀, 刘宗光, 周疆, 滕志东. 变指标中心BMO空间. 数学学报, 2018, 61(4): 641-650 https://doi.org/10.12386/A2018sxxb0059
Ding Huai WANG, Zong Guang LIU, Jiang ZHOU, Zhi Dong TENG. Central BMO Spaces with Variable Exponent. Acta Mathematica Sinica, Chinese Series, 2018, 61(4): 641-650 https://doi.org/10.12386/A2018sxxb0059

参考文献

[1] Chen Y. Z., Lau K. S., Some new classes of Hardy spaces, J. Funct. Anal., 1989, 84:255-278.
[2] Cruz-Uribe D., Fiprenza A., Martell J. M., et al., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 2003, 28:223-238; 2004, 29:247-249.
[3] Diening L., Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 2005, 129:657-700.
[4] Fu Z. W., Liu Z. G., Lu S. Z., et al., Characterization for commutators of n-dimensional fractional Hardy operators, Sci. China, Ser. A, 2007, 50:1418-1426.
[5] García-Cuerva J., Hardy spaces and Beurling algebras, J. Lond. Math. Soc., 1989, 39:499-513.
[6] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952.
[7] Izuki M., Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 2010, 59:199-213.
[8] John F., Nirenberg L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 1961, 2:415-426.
[9] Ková?ik O., Rákosník J., On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 1991, 41(116):592-618.
[10] Lu S. Z., Yang D. C., The Littlewood-Paley function and φ-transform characterizations of a new Hardy space HK2 associated with the Herz space, Studia Math., 1992, 101:285-298.
[11] Lu S. Z., Yang D. C., Some new Hardy spaces associated with the Herz spaces and their applications (in Chinese), J. Beijing Normal Univ., 1993, 29:10-19.
[12] Wang D. H., Zhou J., Some new classes of BMO spaces, Acta Math. Sin., Chin. Ser., 2017, 60(5):833-846.

基金

国家自然科学基金资助项目(11661075,11271312)

PDF(486 KB)

Accesses

Citation

Detail

段落导航
相关文章

/