
实直线周期子集上的向量值子空间弱Gabor双框架
Vector-valued Subspace Weak Gabor Bi-frames on Periodic Subsets of the Real Line
因其在多路复用技术中的潜在应用,超框架(又称向量值框架)和子空间框架受到了众多数学家和工程专家的关注.弱双框架是希尔伯特空间中双框架的推广.本文研究实直线周期子集上的向量值子空间弱Gabor双框架(WGBFs),即L2(S,CL)中的WGBFs,其中S是R上的周期子集.利用Zak变换矩阵方法,得到了WGBFs的刻画,它将构造WGBFs的问题归结为设计有限阶Zak变换矩阵;给出了WGBFs的一个例子定理;导出了WGBFs的一个稠密性定理.
Due to their potential applications in multiplexing techniques, superframes (also called vector-valued frames) and subspace frames have interested many mathematicians and engineering specialists. A weak bi-frame is a generalization of a bi-frame in a Hilbert space. This paper addresses vector-valued subspace weak Gabor bi-frames (WGBFs) on periodic subsets of the real line, that is, WGBFs for L2(S, CL) with S being periodic subsets of R. Using Zak transform matrix method, we obtain a characterization of WGBFs, which reduces constructing WGBFs to designing Zak transform matrices of finite order; present an example theorem of WGBFs; and derive a density theorem for WGBFs.
框架 / 弱Gabor双框架 / 向量值框架 / 子空间 {{custom_keyword}} /
frame / weak Gabor bi-frame / vector-valued frame / subspace {{custom_keyword}} /
[1] Atreas N., Melas A., Stavropoulos T., Affine dual frames and extension principles, Appl. Comput. Harmon. Anal., 2014, 36(1):51-62.
[2] Balan R., Density and redundancy of the noncoherent Weyl-Heisenberg superframes, Contemp. Math., 1999, 247:29-41.
[3] Balan R., Multiplexing of signals using superframes, Wavelets and Applications in Signal and Image Processing VⅢ, A. Aldroubi, A. Laine (Eds.), SPIE Proceedings, 2000, 4119:118-130.
[4] Balan R., Extensions of no-go theorems to many signal systems, In:Wavelets, Multiwavelets, and Their Applications (San Diego, CA, 1997), Contemp. Math., Amer. Math. Soc., Providence, RI, 1998, 216:3-14.
[5] Bildea S., Dutkay D. E., Picioroaga G., MRA super-wavelets, New York J. Math., 2005, 11:1-19.
[6] Bownik M., Rzeszotnik Z., Construction and reconstruction of tight framelets and wavelets via matrix mask functions, J. Funct. Anal., 2009, 256(4):1065-1105.
[7] Casazza P. G., Christensen O., Weyl-Heisenberg frames for subspaces of L2(R), Proc. Amer. Math. Soc., 2001, 129(1):145-154.
[8] Christensen O., An Introduction to Frames and Riesz Bases, Springer, Birkhäuser, 2016.
[9] Dai X., Diao Y., Gu Q., Subspaces with normalized tight frame wavelets in R, Proc. Amer. Math. Soc., 2002, 130(6):1661-1667.
[10] Dai X., Diao Y., Gu Q., et al., Frame wavelets in subspaces of L2(Rd), Proc. Amer. Math. Soc., 2002, 130(11):3259-3267.
[11] Dai X., Diao Y., Gu Q., et al., The existence of subspace wavelet sets, J. Comput. Appl. Math., 2003, 155(1):83-90.
[12] Daubechies I., Han B., Pairs of dual wavelet frames from any two refinable functions, Constr. Approx., 2004, 20(3):325-352.
[13] Daubechies I., Han B., Ron A., et al., Framelets:MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 2003, 14(1):1-46.
[14] Dutkay D. E., The local trace function for super-wavelets, Wavelets, frames and operator theory, Contemp. Math., 2004, 345:115-136.
[15] Dutkay D. E., Jorgensen P., Oversampling generates super-wavelets, Proc. Amer. Math. Soc., 2007, 135(7):2219-2227.
[16] Ehler M., On multivariate compactly supported bi-frames, J. Fourier Anal. Appl., 2007, 13(5):511-532.
[17] Ehler M., Han B., Wavelet bi-frames with few generators from multivariate refinable functions, Appl. Comput. Harmon. Anal., 2008, 25(3):407-414.
[18] Führ H., Simultaneous estimates for vector-valued Gabor frames of Hermite functions, Adv. Comput. Math., 2008, 29(4):357-373.
[19] Gabardo J. P., Han D., Subspace Weyl-Heisenberg frames, J. Fourier Anal. Appl., 2001, 7(4):419-433.
[20] Gabardo J. P., Han D., Balian-Low phenomenon for subspace Gabor frames, J. Math. Phys., 2004, 45(8):3362-3378.
[21] Gabardo J. P., Han D., The uniqueness of the dual of Weyl-Heisenberg subspace frames, Appl. Comput. Harmon. Anal., 2004, 17(2):226-240.
[22] Gabardo J. P., Han D., Li Y. Z., Lattice tiling and density conditions for subspace Gabor frames, J. Funct. Anal., 2013, 265(7):1170-1189.
[23] Gabardo J. P., Li Y. Z., Density results for Gabor systems associated with periodic subsets of the real line, J. Approx. Theory, 2009, 157(2):172-192.
[24] Gabardo J. P., Li Y. Z., Rational time-frequency Gabor frames associated with periodic subsets of the real line, Int. J. Wavelets Multiresolut. Inf. Process., 2014, 12(2):441-452.
[25] Gröchenig K., Lyubarskii Y., Gabor (super)frames with Hermite functions, Math. Ann., 2009, 345(2):267-286.
[26] Gu Q., Han D., Super-wavelets and decomposable wavelet frames, J. Fourier Anal. Appl., 2005, 11(6):683-696.
[27] Han D., Larson D., Frames, bases and group representations, Mem. Amer. Math. Soc., 2000, 147(697), 94pp.
[28] Jia H. F., Li Y. Z., Weak (quasi-)affine bi-frames for reducing subspaces of L2(Rd), Sci. China Math., 2015, 58(5):1005-1022.
[29] Jia H. F., Li Y. Z., Refinable function-based construction of weak (quasi-)affine bi-frames, J. Fourier Anal. Appl., 2014, 20(6):1145-1170.
[30] Li Z. Y., Han D., Constructing super Gabor frames:the rational time-frequency lattice case, Sci. China Math., 2010, 53(12):3179-3186.
[31] Li Y. Z., Jia H. F., Weak Gabor bi-frames on periodic subsets of the real line, Int. J. Wavelets Multiresolut. Inf. Process., 2015, 13(6), 1550046, 23pp.
[32] Li Y. Z., Jia H. F., Weak nonhomogeneous wavelet bi-frames for reducing subspaces of Sobolev spaces, Numer. Funct. Anal. Optim., 2017, 38(2):181-204.
[33] Li Y. Z., Zhang Y., Rational time-frequency vector-valued subspace Gabor frames and Balian-Low Theorem, Int. J. Wavelets Multiresolut. Inf. Process., 2013, 11(2), 1350013, 23pp.
[34] Li Y. Z., Zhang Y., Vector-valued Gabor frames associated with periodic subsets of the real line, Appl. Math. Comput., 2015, 253:102-115.
[35] Li Y. Z., Zhou F. Y., Rational time-frequency super Gabor frames and their duals, J. Math. Anal. Appl., 2013, 403(2):619-632.
[36] Ron A., Shen Z., Affine systems in L2(Rd):the analysis of the analysis operator, J. Funct. Anal., 1997, 148(2):408-447.
[37] Seip K., Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer. Math. Soc., 1993, 117(1):213-220.
[38] Stavropoulos T., The geometry of extension principles, Houston J. Math., 2012, 38(3):833-853.
[39] Tian Y., Li Y. Z., Subspace dual super wavelet and Gabor frames, Sci. China Math., 2017, 60(12):2429-2446.
[40] Young R. M., An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.
[41] Zhou F. Y., Li Y. Z., Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of L2(Rd), Kyoto J. Math., 2010, 50(3):83-99.
国家自然科学基金资助项目(11271037)
/
〈 |
|
〉 |