
拟线性Schrödinger-Poisson方程正解、负解、变号解的存在性
Existence of Signed and Sign-changing Solutions for Quasilinear Schrödinger-Poisson System
本文考虑拟线性Schrödinger-Poisson方程
其中f是一个C1超线性且次临界的非线性项,V是正的有界位势.利用扰动方法,我们证明了该方程非平凡解、正解、负解、变号解的存在性.
We consider the following quasilinear Schrödinger-Poisson system
where f is C1, superlinear and subcritical nonlinearity, V is bounded positive potential. By using the method of perturbation, we prove the system has non-trivial solutions, positive solutions, negative solutions and sign-changing solutions.
拟线性Schrödinger-Poisson方程 / 变号解 / 扰动方法 {{custom_keyword}} /
Schrödinger-Poisson system / sign-changing solutions / the method of perturbation {{custom_keyword}} /
[1] Azzollini A., Pomponio A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345:90-108.
[2] Bartsch T., Liu Z., Weth T., Nodal solutions of a p-Laplacian equation, Proc. Lond. Math. Soc., 2005, 91(3):129-152.
[3] Bartsch T., Liu Z., Weth T., Sign-changing solutions of superlinear Schrödinger equations, Comm. Partial Diff. Equ., 2004, 29:25-42.
[4] Bartsch T., Wang Z. Q., Existence and multiplicity rresults for some superlinear elliptic problems on RN, Comm. Partial Diff. Equ., 1995, 20:1725-1741.
[5] Benci V., Fortunato D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11:283-293.
[6] Benci V., Fortunato D., Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 2002, 14:409-420.
[7] Fang Y., Zhang J., Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system, Commun. Pure Appl. Anal., 2011, 10:1267-1279.
[8] Feng X., Zhang Y., Existence of non-trivial solution for a class of modified Schrödinger-Poisson equations via perturbation method, J. Math. Anal. Appl., 2016, 442:673-683.
[9] Huang Y., Liu X., Sign-changing solutions for p-biharmonic equations with Hardy potantial in half-space, J. Math. Anal. Appl., 2016, 444:1417-1437.
[10] Ianni I., Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem, Topol. Methods Nonlinear Anal., 2013, 41:365-385.
[11] Ianni I., Vaira G., Non-radial sign-changing solutions for the Schrödinger-Poisson problem in the semi classical limit, Nonlinear Diff. Equ. and Appl. Nodea., 2012, 224:741-776.
[12] Liu J., Liu X., Wang Z. Q., Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. Partial Diff. Equ., 2014, 39:2216-2239.
[13] Liu J. Q., Wang Y., Wang Z. Q., Solutions for quasilinear Schrödinger equations via Nehari method, Comm. Partial Diff. Equ., 2004, 29:879-901.
[14] Liu X., Liu J., Wang Z. Q., Quasilinear elliptic equations with critical growth via perturbation method, J. Diff. Equ., 2013, 254:102-124.
[15] Liu X., Liu J., Wang Z. Q., Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Diff. Equ., 2013, 46:641-669.
[16] Liu Z., Sun J., Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Diff. Equ., 2001, 172:257-299.
[17] Liu Z., Wang Z. Q., Zhang J., Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Annali di Matematica, 2016, 195:775-794.
[18] Ruiz D., Siciliano G., Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 2010, 23:1221-1233.
[19] Shuai W., Wang Q., Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3, Z. Angew. Math. Phys., 2015, 66:3267-3282.
[20] Wang J., Tian L., Xu J., et al., Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in R3, Calc. Var. Partial Diff. Equ., 2013, 48:243-273.
[21] Wang J., Tian L., Xu J., et al., Existence of multiple solutions for Schrödinger-Poisson systems with critical groth, Z. Angew. Math. Phys., 2015, 66:2441-2471.
[22] Wang Z., Zhou H., Sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3, Calc. Var. Partial Diff. Equ., 2015, 52:927-943.
[23] Wu X., Wu K., Existence of positive solutions, negative solutions and high energy solutions for quasi-linear elliptic equations on RN, Nonlinear Anal. Real World Appl., 2014, 16:48-64.
[24] Zhang W., Liu X., Infinitely many sign-changing solutions for a quasilinear elliptic equation in RN, J. Math. Anal. Appl., 2015, 427:722-740.
[25] Zhao L., Zhao F., Positive solutions for Schrödinger-Poisson equations with critical exponent, Nonlinear Anal., 2009, 70:2150-2164.
[26] Zou W. M., Schechter M., Critical Point Theory and Its Applications, Springer, New York, 2006.
云南省地方本科高校(部分)基础研究联合专项;红河学院科研基金博士专项项目(XJ17B11)
/
〈 |
|
〉 |