Ladyzhenskaya流体力学方程组的拉回吸引子与不变测度
Pullback Attractor and Invariant Measure for the Equations of Ladyzhenskaya Fluid
本文讨论带周期边界条件的二维Ladyzhenskaya流体力学方程组解的渐近行为.作者先证明该流体力学方程组存在拉回吸引子,然后证明该拉回吸引子上存在唯一不变Borel概率测度.
This paper studies the asymptotic behavior of solutions for equations of the two-dimensional Ladyzhenskaya fluid with periodic boundary conditions. The authors first prove the existence of the pullback attractor for the associated process. Then they establish the existence and uniqueness of the invariant Borel probability measure contained in the pullback attractor.
Ladyzhenskaya流体方程组 / 拉回吸引子 / 不变测度 {{custom_keyword}} /
equations of Ladyzhenskaya fluid / pullback attractor / invariant measure {{custom_keyword}} /
[1] Adams R. A., Sobolev Spaces, Academic Press, New York, 1975.
[2] Bae H., Existence regularity and decay rate of solutions of non-Newtonian flow, J. Math. Anal. Appl., 1999, 231:467-491.
[3] Bae H., Choe H., Existence and regularity of solutions of non-Newtonian flow, Quart. Appl. Math., 2000, 58:101-110.
[4] Bloom F., Hao W., Regularization of a non-Newtonian system in an unbounded channel:Existence and uniqueness of solutions, Nonlinear Anal., 2001, 44:281-309.
[5] Bellout H., Bloom F., Necas J., Young measure value solutions for non-Newtonian incompressible fluids, Comm. Partial Diff. Equa., 1994, 19:1768-1803.
[6] Bohme G., Non-Newtonian Fluid Mechanics, North-Holland, Amsterdam, 1987.
[7] Boyer F., Fabrie P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2013.
[8] Caraballo T., Lukaszewicz G., Real J., Pullback attractors for asymptotically compact non-autonomous dynamical system, Nonlinear Anal., 2006, 64:484-498.
[9] Dong B., Li Y., Large time behavior to system of incompressible, J. Math Anal. Appl., 2004, 209:667-676.
[10] Foias C., Manley O., Rosa R., et al., Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2004.
[11] García-Luengo J., Marín P., Real J., Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behavior, J. Diff. Equa., 2012, 252:4333-4356.
[12] Guo B., Lin G., Shang Y., Dynamics of Non-Newtonian Fluid, National Defence Industry Press, Beijing, 2006.
[13] Ladyzhenskaya O., The Mathematical Theory of Viscous Incompressible Fluids, Gordon and Breach, New York, 1969.
[14] Ladyzhenskaya O., New Equations for the Description of the Viscous Incompressible Fluids and Solvability in the Large of the Boundary Value Problem for Them, in:Boundary Value Problem of Mathematical Physics, AMS R.I., 1970.
[15] Lion J. L., Quelques Méthodes de Résolution des Problems aux Limits non Linéaires, Dunod, Paris, 1969.
[16] Lukaszewicz G., Robinson J. C., Invariant measures for non-autonomous dissipative dynamical systems, Discrete Contin. Dyn. Syst. A, 2014, 34:4211-4222.
[17] Pokorń y M., Cauchy problem for non-Newtonian incompressible fluids, Appl. Math., 1996, 41:169-201.
[18] Necasová Š., Penel P., L2 decay for weak solution to equation of non-Newtonian incompressible fluids in the whole space, Nonlinear Anal., 2001, 47:4181-4191.
[19] Zhao C., Zhou S., Pullback attractors for nonautonomous incompressible non-Newtonian fluid, J. Diff. Equa., 2007, 238:394-425.
[20] Zhao C., Li Y., Zhou S., Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid, J. Diff. Equa., 2009, 247:2331-2363.
[21] Zhao C., Yang L., Pullback attractor and invariant measures for the non-autonomous globally modified Navier-Stokes equations, Commun. Math. Sci., 2017, 15:1565-1580.
[22] Zhao C., Wu H., Li C., Trajectory attractor for a class of three-dimensional incompressible non-Newtonian fluids, Acta Math. Sin., Chin. Ser., 201558(1):1-12.
国家自然科学基金资助项目(11271290,51279209);浙江省自然科学基金资助项目(LY17A010011)
/
〈 | 〉 |