双扭曲积Hermitian流形

何勇, 张晓玲

数学学报 ›› 2018, Vol. 61 ›› Issue (5) : 835-842.

PDF(459 KB)
PDF(459 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (5) : 835-842. DOI: 10.12386/A2018sxxb0077
论文

双扭曲积Hermitian流形

    何勇1, 张晓玲2
作者信息 +

On Doubly Warped Product of Hermitian Manifolds

    Yong HE1, Xiao Ling ZHANG2
Author information +
文章历史 +

摘要

主要研究双扭曲积Hermitian流形的各种曲率,给出了紧致非平凡的双扭曲积Hermitian流形具有常全纯截面曲率的充要条件,得到了一种构造满足第一或第二爱因斯坦条件的Hermitian流形的有效方法.

Abstract

This paper is concerned with curvatures of doubly warped product (DWP) of Hermitian manifolds. The necessary and sufficient conditions for a compact nontrivial DWP-Hermitian manifold to have constant holomorphic sectional curvature were obtained. This study provides us an effective way to construct new Hermitian manifolds which satisfy the first or the second Einstein condition.

关键词

双扭曲积 / 陈Ricci数量曲率 / 全纯截面曲率 / 爱因斯坦条件

Key words

doubly warped product / Chern Ricci scalar curvature / holomorphic sectional curvature / Einstein condition

引用本文

导出引用
何勇, 张晓玲. 双扭曲积Hermitian流形. 数学学报, 2018, 61(5): 835-842 https://doi.org/10.12386/A2018sxxb0077
Yong HE, Xiao Ling ZHANG. On Doubly Warped Product of Hermitian Manifolds. Acta Mathematica Sinica, Chinese Series, 2018, 61(5): 835-842 https://doi.org/10.12386/A2018sxxb0077

参考文献

[1] Asanov G. S., Finslerian extension of Schwarzschild metric, Fortschr. Phys., 1992, 40:667-693.
[2] Asanov G. S., Finslerian metric functions over the product R×M and their potential applications, Rep. Math. 23 Phys., 1998, 41:117-132.
[3] Baagherzadeh H. A., Rezaii M. M., On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics, J. Geom. Phys., 2012, 62:2077-2098.
[4] Balas A., Compact Hermitian manifolds of constant holomorphic sectional curvature, Math. Z., 1985, 189(27):193-210.
[5] Beem J. K., Ehrlich P. E., Powell T. G., Warped Product Manifolds in Relativity, in Selected Studies:Physics29 Astrophysics, Mathematics, History of Science, North-Holland, Amsterdam, New York, 1982:41-56.
[6] Bertola M., Gouthier D., Warped products with special Riemannian curvature, Bol. Soc. Brasil. Math. (N.S.), 2001, 31(32):45-62.
[7] Bishop R. L., O'Neill B., Manifolds of negative curvature, Trans. Amer. Math. Soc., 1969, 145:1-49.
[8] Dobarro F., Lami D. E., Scalar curvature and warped products of Riemann manifolds, Trans. Amer. Math. Soc., 1987, 34(303):161-168.
[9] He Y., Zhong C., On doubly warped product of complex finsler manifolds, Acta Math. Sci. Ser. Engl. Ed., 2016, 36(6):1747-1766.
[10] Katanaev M. O., Klosch T. I., Kummer W., Global properties of warped solutions in general relativity, Ann., 2 Physics, 1999, 276:191-222.
[11] Kobayashi S., Nomizu K., Foundations of Differential Geometry. Vol. Ⅱ, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996.
[12] Kozma L., Peter R., Varga C., Warped product of Finsler manifolds, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 2002, 44(2001):157-170.
[13] Liu K., Yang X., Ricci Curvatures on Hermitian Manifolds, ArXiv e-prints, 2014.
[14] O'Neill B., Semi-Riemannian Geometry, Vol. 103, Academic Press, Inc., New York, 1983.

基金

国家自然科学基金(11761069,11461064);新疆师范大学博士科研启动基金(XJNUBS1626)

PDF(459 KB)

369

Accesses

0

Citation

Detail

段落导航
相关文章

/