
分形花及其网络上的平均测地距离
Average Geodesic Distance of Flower Fractal and Flower Networks
借助圆周映射计算距离函数在自相似测度上的积分,本文利用自相似测度得到分形花上的平均测地距离,并将此结果应用于分形花网络.
By calculating the integral of distance function on self-similar measure with the help of circle mapping, we provide the average distance of self-similar flower fractal in terms of self-similar measure and apply the result to evolving flower networks.
分形 / 自相似集 / 自相似测度 / 测地距离 {{custom_keyword}} /
fractal / self-similar set / self-similar measure / geodesic distance {{custom_keyword}} /
[1] Barabási A. L., Albert R., Emergence of scaling in random networks, Science, 1999, 286:509-512.
[2] Chung F., Lin Y., Yau S. T., Harnack inequalities for graphs with non-negative Ricci curvature, J. Math. Anal. Appl., 2014, 415(1):25-32.
[3] Dai M., Ye D., Hou J., et al., Scaling of average weighted receiving time on double-weighted Koch networks, Fractals, 2015, 23(2):1550011.
[4] Dorogovtsev S. N., Goltsev A. V., Mendes J. F. F., Pseudofractal scale-free web, Physical Review E., 2002, 65(6):066122.
[5] Gao F., Le A., Xi L., et al., Asymptotic formula on average path length of fractal networks modeled on Sierpinski gasket, J. Math. Anal. Appl., 2016, 434(2):1581-1596.
[6] Hua B., Lin Y., Stochastic completeness for graphs with curvature dimension conditions, Adv. Math., 2017, 306:279-302.
[7] Huang D. W., Yu Z. G., Anh V., Multifractal analysis and topological properties of a new family of weighted Koch networks, Phys. A., 2017, 469:695-705.
[8] Hutchinson J. E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5):713-747.
[9] Newman M. E. J., The structure and function of complex networks, SIAM Rev., 2003, 45:167-256.
[10] Newman M. E. J., Networks:An Introduction, Oxford University Press, Oxford, 2010.
[11] Rozenfeld H. D., Havlin S., Ben-Avraham D., Fractal and transfractal recursive scale-free nets, New J. Physics, 2007, 9(6):175.
[12] Sun Y., Dai M., Sun Y., et al., Scaling of the average receiving time on a family of weighted hierarchical networks, Fractals, 2016, 24(3):1650038.
[13] Watts D. J., Strogatz S. H., Collective dynamics of ‘small-world’ networks, Nature, 1998, 393:440-442.
国家自然科学基金资助项目(11771226,11371329,11471124);新世纪优秀人才支持计划;浙江省哲学社会科学规划课题(17NDJC108YB);宁波大学王宽诚幸福基金会资助项目
/
〈 |
|
〉 |