
广义对角多项式指数和的估计
Estimates for Exponential Sums of Generalized Diagonal Polynomials
利用高斯和与次数矩阵Smith标准形的不变因子,给出了有限域上广义对角多项式指数和的估计,从而改进了Deligne——Weil型估计这类多项式指数和的结果.
By using Gauss sums and invariant factors of Smith normal form of degree matrices, we give the estimates for the exponential sums of generalized diagonal polynomials over finite fields, which improves the Deligne-Weil's type estimates on such exponentials sums.
有限域 / 指数和 / Smith标准形 / 高斯和 {{custom_keyword}} /
finite field / exponential sum / Smith normal form / Gauss sum {{custom_keyword}} /
[1] Cao W., Smith normal form of augmented degree matrix and its applications, Linear Algebra Appl., 2009, 431:1778-1784.
[2] Deligne P., La conjecture de Weil, Publ. Math. IHES, 1974, 43:273-307.
[3] Feng K. Q., Liao Q. Y., Finite Fields and Their Applications, Dalian University of Technology Press, Dalian, 2011.
[4] Han S. M., Zhu M. L., Cao W., Exponential sums and L-functions of polynomials over finite fields, Pure Appl. Math. (Xi'an), 2017, 33:92-101.
[5] Hu S. N., Hong S. F., Zhao W., The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 2015, 156:135-153.
[6] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, GTM, vol. 84, Springer-Verlag, New York, 1982.
[7] Lidl R., Niederreiter H., Finite Fields, Cambridge Univ. Press, Cambridge, 1997.
[8] Nathanson B., Elementary Methods in Number Theory, GTM, vol.195, Springer-Verlag, New York, 2000.
[9] Smith J. S., On systems of linear indeterminate equations and congruences, Philos. Trans. Royal Soc. London, 1861, 151:293-326.
[10] Weil A., On some exponential sums, Proc. Natl. Acad. Sci. USA, 1948, 34:204-207.
国家自然科学基金资助项目(11871291);宁波市自然科学基金资助项目(2017A610134)
/
〈 |
|
〉 |