基于因变量抽样设计下线性回归模型的假设检验问题

刁云霞, 晏舒, 丁洁丽

数学学报 ›› 2018, Vol. 61 ›› Issue (6) : 1003-1020.

PDF(1002 KB)
PDF(1002 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (6) : 1003-1020. DOI: 10.12386/A2018sxxb0091
论文

基于因变量抽样设计下线性回归模型的假设检验问题

    刁云霞1, 晏舒1,2, 丁洁丽1
作者信息 +

Hypothesis Testing in Linear Regression Model under Outcome-Dependent Sampling Design

    Yun Xia DIAO1, Shu YAN1,2, Jie Li DING1
Author information +
文章历史 +

摘要

在许多大型队列研究中,采用节约成本并能提高效率的抽样机制至关重要,基于因变量的抽样设计正是这样一种有偏抽样机制.这种方法最大的优点在于:能够将资源集中在那些包含有更多的协变量与因变量关系信息的研究群体上.本文研究基于因变量抽样设计下的线性模型中回归方程显著性检验以及回归系数显著性检验问题.基于一种半参数经验轮廓似然的方法,我们分别为回归方程检验与回归系数检验提出了相应的检验统计量,获得了所提出检验统计量的渐近性质.通过模拟研究评估了所提出的检验方法在有限样本下的表现,并应用提出的方法分析了一个孕妇分娩的实际数据.

Abstract

A cost-effective sampling design is desirable in large cohort studies due to the cost of measurement on expensive covariates. An outcome-dependent sampling (ODS) design is such a biased-sampling scheme which can improve efficiency by allowing researchers to oversample in the regions of most information. We study hypothesis testing in linear regression model under the ODS design. We propose a likelihood ratio statistic and a Wald statistic for testing the significance of the model, and a U statistic for testing the significance of regression parameter by applying a semiparametric empirical profile-likelihood method. We establish the asymptotic theory for the proposed test statistics. We conduct simulation studies to assess the finite-sample performance of the proposed tests. We illustrate the application of the proposed methods with a real data example.

关键词

有偏抽样 / 似然比检验 / Wald检验 / 半参数经验似然

Key words

biased-sampling / likelihood ratio test / Wald test / semiparametric empirical likelihood

引用本文

导出引用
刁云霞, 晏舒, 丁洁丽. 基于因变量抽样设计下线性回归模型的假设检验问题. 数学学报, 2018, 61(6): 1003-1020 https://doi.org/10.12386/A2018sxxb0091
Yun Xia DIAO, Shu YAN, Jie Li DING. Hypothesis Testing in Linear Regression Model under Outcome-Dependent Sampling Design. Acta Mathematica Sinica, Chinese Series, 2018, 61(6): 1003-1020 https://doi.org/10.12386/A2018sxxb0091

参考文献

[1] Chatterjee N., Chen Y. H., Breslow N. E., A pseudo-score estimator for regression problems with two-phase sampling, Journal of the American Statistical Assoctiation, 2003, 98:158-168.
[2] Ding J., Liu Y., Peden D. B., et al., Regression analysis for a summed missing data problem under an outcome-dependent sampling scheme, The Canadian Journal of Statistics, 2012, 40:282-303.
[3] Ding J., Liu Y., Semiparametric empirical likelihood estimation for two-stage outcome-dependent sampling under the frame of generalized linear models, Acta Mathematicae Applicatae Sinica English, 2014, 30:663-676.
[4] Ding J., Zhou H., Liu Y., et al., Estimating effect of environment contaminants on women's subfecundity for the MoBa study data with an outcome-dependent sampling scheme, Biostatistics, 2014, 15:663-650.
[5] Fang J., Statistical Methods for Biomedical Research (in Chinese), Higher Education Press, Beijing, 2007.
[6] Qin G., Zhou H., Partial linear inference for a 2-stage outcome-dependent sampling design with a continuous outcome, Biostatistics, 2011, 12:506-520.
[7] Song R., Zhou H., Kosorok M. R., On semiparametric efficient inference for two-stage outcome dependent sampling with a continuous outcome, Biometrics, 2009, 96:221-228.
[8] Wang S., Shi J., Yin S., et al., Linear Model Introduction (in Chinese), Science Press, Beijing, 2004, 150-153.
[9] Weaver M. A., Zhou H., An estimated likelihood method for continuous outcome regression models with outcome-dependent sampling, Journal of the American Statistical Association, 2005, 100:459-469.
[10] Yan S., Ding J., Liu Y., Statistical inference methods and applications of outcome-dependent sampling designs under generalized linear models, Science China, Mathematics, 2017, 60:1219-1238.
[11] Yu J., Liu Y., Sandler D. P., et al., Statistical inference for the additive hazards model under outcomedependent sampling, The Canadian Journal of Statistics, 2015, 43:436-453.
[12] Yu J., Liu Y., Cai J., et al., Outcome-dependent sampling design and inference for Cox's proportional hazards model, Journal of Statistical Planning and Inference, 2016, 178:24-36.
[13] Zhou H., Qin G., Longnecker M. P., A partial linear model in the outcome-dependent sampling setting to evaluate the effect of prenatal PCB exposure on cognitive function in children, Biometrics, 2011, 67:876-885.
[14] Zhou H., Song R., Qin J., Statistical inference for a two-stage outcome dependent sampling design with a continuous outcome, Biometrics, 2011, 67:194-202.
[15] Zhou H., Weaver M. A., Qin J., et al., A semiparametric empirical likelihood method for data from an outcome dependent sampling scheme with a continuous outcome, Biometrics, 2002, 58:413-421.
[16] Zhou H., You J., Qin G., et al., A partially linear regression model for data from an outcome-dependent sampling design, Journal of the Royal Statistical Society, Series C, 2011, 60:559-574.

基金

国家自然科学基金资助项目(11671310)

PDF(1002 KB)

Accesses

Citation

Detail

段落导航
相关文章

/