正交酉元列在有限von Neumann代数的迹自由积中的应用

佐凯悦, 钱文华

数学学报 ›› 2018, Vol. 61 ›› Issue (6) : 1021-1028.

PDF(451 KB)
PDF(451 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (6) : 1021-1028. DOI: 10.12386/A2018sxxb0092
论文

正交酉元列在有限von Neumann代数的迹自由积中的应用

    佐凯悦, 钱文华
作者信息 +

An Application of a Sequence of Orthogonal Unitaries in the Tracial Free Product of Finite von Neumann Algebras

    Kai Yue ZUO, Wen Hua QIAN
Author information +
文章历史 +

摘要

M1为一个有限的von Neumann代数,τ1为其上的一个忠实正规迹态. 我们将证明,如果M1中存在一列两两正交的酉元列{ukk∈N},则对任意具有忠实正规迹态τ2的有限vonNeumann代数 M2 (≠C),迹自由积(M1τ1) * (M2τ2) 是Ⅱ1型因子.作为推论可以得出,如果M1有一个von Neumann子代数N不包含最小投影,则对任意具有忠实迹态τ2的有限von Neumann代数M2(≠C),迹自由积(M1,τ1)*(M2τ2)是Ⅱ1型因子.

Abstract

Let M1 be a finite von Neumann algebra with a faithful normal trace τ1 and let M1o={aM,τ1(a)=0}. We prove that, if there is a sequence {uk:kM } of orthogonal unitaries in M1o, then for any finite von Neumann algebra M2(≠C) with a faithful normal trace τ2, the tracial free product (M1, τ1) * (M2, τ2) is a type Ⅱ1 factor. As a corollary, we obtain that, if there is a von Neumann subalgebra N of M1 such that N has no minimal projection, then for any finite von Neumann algebra M2(≠ C) with a faithful normal trace τ2, the tracial free product (M1, τ1) * (M2, τ2) is a type Ⅱ1 factor.

关键词

正交酉元列 / 迹自由积 / 1型因子

Key words

sequence of orthogonal unitaries / tracial free product / type Ⅱ1 factor

引用本文

导出引用
佐凯悦, 钱文华. 正交酉元列在有限von Neumann代数的迹自由积中的应用. 数学学报, 2018, 61(6): 1021-1028 https://doi.org/10.12386/A2018sxxb0092
Kai Yue ZUO, Wen Hua QIAN. An Application of a Sequence of Orthogonal Unitaries in the Tracial Free Product of Finite von Neumann Algebras. Acta Mathematica Sinica, Chinese Series, 2018, 61(6): 1021-1028 https://doi.org/10.12386/A2018sxxb0092

参考文献

[1] Ching W. M., Free products of von Neumann algebras, Trans. Amer. Math. Soc., 1973, 178:147-163.
[2] Dykema K., Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J., 1993, 69:97-119.
[3] Dykema K., Factoriality and the Connes invariant T (M) for free product of von Neumann algebras, J. Reine Angew. Math., 1994, 450:159-180.
[4] Voiculescu D., Symmetries of some reduced free product C*-algebras, In:Operators and Their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics, Vol. 1132, Springer-Verlag, Berlin, 1985:556-588.

基金

国家自然科学基金资助项目(11671133)

PDF(451 KB)

244

Accesses

0

Citation

Detail

段落导航
相关文章

/