旋度与磁场微极流方程的正则性

张辉, 陈鹏飞

数学学报 ›› 2018, Vol. 61 ›› Issue (6) : 1049-1056.

PDF(476 KB)
PDF(476 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (6) : 1049-1056. DOI: 10.12386/A2018sxxb0095
论文

旋度与磁场微极流方程的正则性

    张辉, 陈鹏飞
作者信息 +

Vorticity and Regularity to the 3D Magneto-micropolar Fluid Equations

    Hui ZHANG, Pen Fei CHEN
Author information +
文章历史 +

摘要

本文研究了速度场的旋度与三维磁场微极流方程组光滑解的整体存在性之间的关系,将Constantin与Fefferman关于Navier——Stokes方程组的成果推广到了一个相当完备的不可压缩流体方程组系统,使得相应的结果在微极流方程组以及MHD方程组中都成立.

Abstract

We concern the relations between the voriticity of the velocity field and the global well-posedness of the 3D incompressible magneto-micropolar fluid equations. We improve and extend the result due to Constantin and Fefferman to a quite complete incompressible fluid systems. Moreover, our results have inclusion relation to micropolar fluid and MHD equations.

关键词

磁场微极流方程组 / 弱解 / 正则性准则

Key words

magneto-micropolar fluid equations / weak solution / regularity criterion

引用本文

导出引用
张辉, 陈鹏飞. 旋度与磁场微极流方程的正则性. 数学学报, 2018, 61(6): 1049-1056 https://doi.org/10.12386/A2018sxxb0095
Hui ZHANG, Pen Fei CHEN. Vorticity and Regularity to the 3D Magneto-micropolar Fluid Equations. Acta Mathematica Sinica, Chinese Series, 2018, 61(6): 1049-1056 https://doi.org/10.12386/A2018sxxb0095

参考文献

[1] Beirao da Veiga, Berselli L. C., On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 2002, 15:345-356.
[2] Berseeli L. C., Some geometric constraints and the the problem of global regularity for the Navier-Stokes equations, Nonlinearity, 2009, 22:2561-2581.
[3] Constantin P., Fefferman C., Direction of vorticity and the problem of global regularity for the Navier-Stokes equation, Indiana Univ. Math. J., 1993, 42(3):775-789.
[4] He C., Xin Z. P., On the regularity of solutions to the magnetohydrodynamic equations, J. Differential Equations, 2005, 213(2):235-254.
[5] Ortega-Torres, Rojas-Medar M. A., Magneto-micropolar fluid motion:global existence of strong solutions, Abstract Appl Anal., 1999, 4:109-125.
[6] Ortega-Torres, Rojas-Medar M. A., On the uniqueness and regularity of the weak solution for magnetomicropolar fluid equations, Revista de Matemáticas Aplicadas, 1996, 17:75-90.
[7] Rojas-Medar M. A., Magneto-micropolar fluid motion:Existence and uniqueness of strong solution, Math. Nachr., 1997, 188:301-319.
[8] Rojas-Medar M. A., Boldrini J. L., magneto-micropolar fluid motion:existence of weak solutions, Rev. Mat. Complut., 1998, 11:443-460.
[9] Yuan B. Q., Regularity of weak solutions to magneto-micropolar fluid equations, Acta Mathematica Scientia, 2010, B:1469-1480.
[10] Zhang H., Zhao Y. Y., Blow-up criterion for strong solution to the 3D magneto-micropolar fluid equations in the multiplier space, EJDE, 2012, 18:1-7.
[11] Zhang H., Regularity criteria to the 3D magneto-micropolar equations (in Chinese), Acta Math. Appl. Sinica, 2014, 37:487-496.
[12] Zhang H., Regularity criterion for weak solutions to the 3D magneto-micropolar fluid equations (in Chinese), J. Math., 2016, 36:303-309.
[13] Zhang Z., Yao Z. A., Wang X. F., A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces, Nonlinear Analysis:Theory, Methods and Applications, 2011, 74(6):2220-2225.
[14] Zhou Y., Direction of vorticity and a new regularity criterion for the Navier-Stokes equations, Anziam J., 2005, 46:309-316.
[15] Zhou Y., A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity, Monatsh. Math., 2005, 144:251-257.

基金

安徽省教育厅资助项目(AQKJ2014B009);安庆师范大学博士科研启动项目(K050001309)

PDF(476 KB)

285

Accesses

0

Citation

Detail

段落导航
相关文章

/