带相依终止事件的复发事件数据的可加可乘比率模型

孙琴, 曲连强

数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 87-102.

PDF(732 KB)
PDF(732 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 87-102. DOI: 10.12386/A2019sxxb0008
论文

带相依终止事件的复发事件数据的可加可乘比率模型

    孙琴, 曲连强
作者信息 +

An Additive-Multiplicative Rates Model for Recurrent Event Data with a Terminal Event

    Qin SUN, Lian Qiang QU
Author information +
文章历史 +

摘要

本文对带相依终止事件的复发事件数据提出了一个联合建模分析方法,用一个带脆弱变量的可加可乘比率模型来刻画复发事件过程,还用带脆弱变量的Cox风险率模型来刻画终止事件过程,而且这两个过程的相依性由脆弱变量来刻画.我们利用估计方程的方法,对模型参数进行了估计,给出了所得估计的渐近性质.同时,通过数值模拟分析验证了估计的渐近性质.最后,利用该方法分析了弗吉尼亚大学慢性心脏病病人医疗诊费数据.

Abstract

We propose a joint modeling approach for the analysis of recurrent event data with a terminal event, where an additive-multiplicative rates model is specified for the recurrent event process, the Cox hazards frailty model is specified for the terminal event, and the shared frailty is used to account for the association between the two processes. An estimating equation approach is developed for estimating the model parameters. The asymptotic properties of the proposed estimators are established. Simulation studies are constructed to examine performances of the proposed estimators under finite samples. Finally, we use the proposed method to analyze a medical cost study of chronic heart failure patients.Keywords additive-multiplicative rates model; estimating equation; frailty; recurrent event; terminal event

关键词

可加可乘模型 / 估计方程 / 脆弱变量 / 复发事件 / 终止事件

Key words

additive-multiplicative rates model / estimating equation / frailty / recurrent event / terminal event

引用本文

导出引用
孙琴, 曲连强. 带相依终止事件的复发事件数据的可加可乘比率模型. 数学学报, 2019, 62(1): 87-102 https://doi.org/10.12386/A2019sxxb0008
Qin SUN, Lian Qiang QU. An Additive-Multiplicative Rates Model for Recurrent Event Data with a Terminal Event. Acta Mathematica Sinica, Chinese Series, 2019, 62(1): 87-102 https://doi.org/10.12386/A2019sxxb0008

参考文献

[1] Andersen P., Borgan O., Gill R., et al., Statistical Models Based on Counting Processes, Springer, New York, 1993.
[2] Andersen P., Gill R., Cox's regression model for counting processes:A large sample study, Annals of Statistics, 1982, 10:1100-1120.
[3] Chen C. M., Shen P. S., Chuang Y. W., The partly Aalen's model for recurrent event data with a dependent terminal event, Statistics in Medicine, 2016, 35:268-281.
[4] Cook R., Lawless J., Marginal analysis of recurrent events and a terminating event, Statistics in Medicine, 1997, 16:911-924.
[5] Cook R., Lawless J., The Statistical Analysis of Recurrent Events, Springer, New York, 2007.
[6] Cook R., Lawless J., Lakhal-Chaieb L., et al., Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination:Application to skeletal complications in cancer metastatic to bone, Journal of the American Statistical Association, 2009, 104:60-75.
[7] Ghosh D., Lin D., Marginal regression models for recurrent and terminal events, Statistica Sinica, 2002, 12:663-688.
[8] Gill R., Johansen S., A survey of product-integration with a view toward application in survival analysis, The Annals of Statistics, 1990, 18:1501-1555.
[9] Huang C., Wang M., Joint modeling and estimation for recurrent event processes and failure time data, Journal of the American Statistical Association, 2004, 99:1153-1165.
[10] Kalbfleisch J., Prentice R., The Statistical Analysis of Failure Time Data, 2nd edition, Wiley, New York, 2002.
[11] Kalbfleisch J., Schaubel D., Ye Y., et al., An estimating function approach to the analysis of recurrent and terminal events, Biometrics, 2013, 69:366-374.
[12] Lin D., Wei L., Yang I., et al., Semiparametric regression for the mean and rate function of recurrent events, Journal of the Royal Statistical Society B, 2000, 62:711-730.
[13] Lin D., Wei L., Ying Z., Checking the Cox model with cumulative sums of martingale-based residuals, Biometrika, 1993, 80:557-572.
[14] Lin D., Wei L., Ying Z., Semiparametric transformation models for point processes, Journal of the American Statistical Association, 2001, 96:620-628.
[15] Lin D., Ying Z., Semiparametric analysis of the additive risk model, Biometrika, 1994, 81:61-71.
[16] Lin D., Ying Z., Semiparametric analysis of general additive-multiplicative hazard models for counting processes, The Annals of Statistics, 1995, 23:1712-1734.
[17] Lin D., Ying Z., Semiparametric and nonparametric regression analysis of longitudinal data, Journal of the American Statistical Association, 2001, 96:103-126.
[18] Liu L., Huang X., O'Quigley J., Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data, Biometrics, 2008, 64:950-958.
[19] Liu D., Schaubel D., Kalbfleisch J., Computationally efficient marginal models for clustered recurrent event data, Biometrics, 2012, 68:637-647.
[20] Liu L., Wolfe R., Huang X., Shared frailty model for recurrent events and a terminal event, Biometrics, 2004, 60:747-756.
[21] Liu Y., Wu Y., Can J., et al., Additive-multiplicative rates model for recurrent events, Lifetime Data Analysis, 2010, 16:353-373.
[22] Pan Q., Schaubel D., Flexible estimation of differences in treatment-specific recurrent event means in the presence of a terminating event, Biometrics, 2009, 65:753-761.
[23] Pollard D., Empirical Processes:Theory and Applications, Institute of Mathematical Statistics, Hayward, CA, 1990.
[24] Polyanin A., Manzhirov A., Handbook of Integral Equations, 2nd edition, Boca Chapman and Hall/CRC, Raton, FL, 2008.
[25] Qu L., Sun L., Liu L., Joint modeling of recurrent and terminal events using additive models, Statistics and Its Interface, 2017, 10:699-710.
[26] Rudin W., Principles of Mathematical Analysis, 3nd edition, McGraw-Hill, New York, 1976.
[27] Schaubel D., Zhang M., Estimating treatment effects on the marginal recurrent event mean in the presence of a terminating event, Lifetime Data Analysis, 2010, 16:451-477.
[28] Sun L., Song X., Zhou J., et al., Joint analysis of longitudinal data with informative observation times and a dependent terminal event, Journal of the American Statistical Association, 2012, 107:688-700.
[29] Sun L., Kang F., An additive-multiplicative rates model for recurrent event data with informative terminal event. Lifetime Data Analysis, 2013, 19:117-137.
[30] Sun L., Zhao X., Zhou J., A class of mixed models for recurrent event data, The Canadian Journal of Statistics, 2011, 39:578-590.
[31] van der Vaart A., Wellner J., Weak Convergence and Empirical Processes, Springer, New York, 1996.
[32] Wang M., Qin J., Chiang C., Analyzing recurrent event data with informative censoring, Journal of the American Statistical Association, 2001, 96:1057-1065.
[33] Ye Y., Kalbfleisch J., Schaubel D., Semiparametric analysis of correlated recurrent and terminal events. Biometrics, 2007, 63:78-87.
[34] Zeng D., Cai J., A semiparametric additive rate model for recurrent events with informative terminal event, Biometrika, 2010, 97:699-712.
[35] Zeng D., Lin D., Semiparametric transformation models with random effects for recurrent events, Journal of the American Statistical Association, 2007, 102:167-180.
[36] Zeng D., Lin D., Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events, Biometrics, 2009, 65:746-752.
[37] Zhao X., Zhou J., Sun L., Semiparametric transformation models with time-varying coefficients for recurrent and terminal events, Biometrics, 2011, 67:404-414.

基金

中央高校基本科研业务费青年教师项目(20205170465)

PDF(732 KB)

Accesses

Citation

Detail

段落导航
相关文章

/