固定效应部分线性可加面板数据模型的惩罚二次推断估计
Penalized Quadratic Inference Estimation of Fixed Effects Partially Linear Additive Panel Data Model
具有较强解释力和灵活性的部分线性可加面板数据模型在各学科领域应用广泛.针对个体内存在相关结构的固定效应部分线性可加面板数据模型,本文在结合幂样条函数和最小二乘虚拟变量(LSDV)法的基础上,利用惩罚二次推断函数(PQIF)法对模型进行估计,在一定的正则条件下,证明了参数估计的渐近正态性和非参数估计的收敛性,MonteCarlo数值模拟显示所述估计方法具有良好的有限样本表现,同时,我们还将估计技术应用于实际数据分析中.
Partially linear additive panel data models with strong interpretability and flexibility have been widely used in a variety of research fields. Considered a fixed effects partially linear additive panel data model with correlation structure within subjects, we derived the estimators by using penalized quadratic inference functions method under the basis of combining exponential spline function and LSDV method; the asymptotic normality of parametric estimators and convergence of nonparametric estimators were proved under suitable regular conditions; Monte Carlo simulations show that our estimates have good performances in small sample cases; meanwhile, the estimation techniques were used to analyse a real data set.
固定效应部分线性可加面板数据模型 / 惩罚二次推断函数 / 相关结构 {{custom_keyword}} /
partially linear additive panel data model with fixed effects / penalized quadratic inference function / correlation structure {{custom_keyword}} /
[1] Ai C., You J., Zhou Y., Estimation of fixed effects panel data partially linear additive regression models, Econometrics Journal, 2014, 17(1):83-106.
[2] Fan J., Yao Q., Nonlinear Time Series:Nonparametric and Parametric Methods, Springer-Verlag, New York, 2003.
[3] Fan J., Jiang J., Nonparametric inferences for additive models, Journal of American Statistical Association, 2005, 471(100):890-907.
[4] Fridman J. H., Stuetzle W., Projection and pursuit regression, Journal of American Statistical Association, 1981, 376(76):817-823.
[5] Gao J., Nonlinear Time Series:Semiparametric and Nonparametric Methods, Chapman and Hall, Melbourne, 2007.
[6] Hamilton J. D., Time Series Analysis, Princeton University Press, New Jersey, 1994.
[7] Hastie T., Tibshirani R., Generalized additive models, Statistical Science, 1986, 3(1):297-318.
[8] He X., Shi P., Bivariate tensor-product B-spines in a partly linear model, Journal of Multivariate Analysis, 1996, 58(2):162-181.
[9] He X., Fung W. k., Zhu Z., Robust estimation in generalized partial linear models for clustered data, Journal of American Statistical Association, 2005, 472(100):1176-1184.
[10] Jiang J., Zhou H., Jiang X., et al., Generalized likelihood ratio tests for the structures of Semiparametric additive models, Canadian Journal of Statistics, 2007, 35(3):381-398.
[11] Liang H., Su H., Thurston S. W., et al., Empirical likelihood based inference for additive partial linear measurement error models, Statistics and Its Inference, 2009, 36(3):83-90.
[12] Liang K. Y., Zeger S. L., Longitudinal data Aaalysis using generalized linear models, Biometrika, 1986, 73(1):13-22.
[13] Li Q., Racine J. S., Nonparametric Econometrics:Theory and Practice, Princeton University, New Jersey, 2007.
[14] Liu X., Wang L., Liang H., Estimation and variable selection for Semiparametric additive partial linear models, Stat Sin., 2011, 21(3):1225-1248.
[15] Martinussen T., Scheike T. H., A Semiparametric additive regression model for longitudinal data, Biometrika, 1999, 86(3):691-702.
[16] Martinussen T., Scheike T. H., A nonparametric dynamic additive regression model for longitudinal data, Annals of Statistics, 2000, 28(4):1000-1025.
[17] Moral I., Rodriguez-Poo J., An Efficient Marginal Integration Estimator of a Semiparametric Additive modeling, Statistics and Probability Letters, 2004, 69(4):451-463.
[18] Qu A., Lindsay B. G., Li B., Improving generalized estimating equations using quadratic inference functions, Biometrika, 2000, 87(4):823-836.
[19] Qu A., Lindsay B. G., Building adaptive estimating equations when inverse of covariance estimation is difficult, Journal of the Royal Statistical Society, 2006, 65(1):127-142.
[20] Wu J., Xue L., model detection for additive models with longitudinal data, Scientific Research, 2014, 4(10):868-878.
[21] Xue L., Qu A., Zhou J., Consistent model selection for marginal generalized additive model for correlated data, Journal of the American Statistical Association, 2010, 105(492):679-695.
[22] You J., Zhou H., Two stage efficient estimation of longitudinal nonparametric additive models, Statistics and Probability Letters, 2007, 77(17):1666-1675.
[23] You J., Zhou X., Efficient estimation in panel data partially additive linear model with serially correlated errors, Statistica Sinica, 2013, 23(23):271-303.
[24] Zhou X., Zhao P., Lin L., Empirical likelihood for parameters in an additive partially linear errors-in-variables model with longitudinal data, Journal of Korean Statistical Society, 2014, 43(1):91-103.
国家社会科学基金(16BTJ018);教育部人文社会科学重点研究基地重大项目(15JJD790029);教育部人文社会科学研究项目(13YJA9100002);福建省自然科学基金(2017J01396);福建师范大学创新团队项目(IRTL1704)
/
〈 | 〉 |