推广的GDGH2系统的自相似解及爆破现象
Analytical Solutions and Blowup Phenomena for the GDGH2 System
本文研究了广义两分量Dullin-Gottwald-Holm(GDGH2)浅水波系统及其推广形式的一类自相似解.首先通过构造Emden方程,分析了解的全局存在性,以及在一定条件下解的爆破现象;其次利用扰动方法和特征线法,构造了两种形式的精确解.
In this paper, we study the analytical solutions for the extended generalized two-component Dullin-Gottwald-Holm shallow water system. By the resulting of Emden equation, we investigate the global existence and finite-time blowup phenomena. Furthermore, the perturbation method and characteristic method are used to construct two types of exact solutions for this system.
Dullin-Gottwald-Holm系统 / Emden方程 / 全局存在性 / 爆破 {{custom_keyword}} /
Dullin-Gottwald-Holm system / Emden equation / global existence / blowup {{custom_keyword}} /
[1] An H., Cheung K., Yuen M., Perturbational self-similar solutions for the 2-component Degasperi-Procesi system via a characteristic method, Invent. Turk. J. Math., 2016, 40:1237-1245.
[2] Beals R., Sattinger D., Szmigielski J., Multi-peakons and a theorem of Stieltjes, Invent. Inverse Problems, 1999, 15:L1-L4.
[3] Benjamin T. B., Bona J. L., Mahony J. J., Model equations for long waves in nonlinear dispersive systems, Invent. Philos. Trans. Roy. Soc. London Ser. A, 1972, 272:47-78.
[4] Camassa R., Holm D. D., An integrable shallow water equation with peaked solitons, Invent. Phys. Rev. Lett., 1993, 71:1661-1664.
[5] Chen R. M., Liu Y., Wave-breaking and global existence for a generalized two-component Camassa-Holm system, Invent. Int. Math. Res. Not., 2011, 2011:1381-1416.
[6] Chou K. S., Qu C., Integrable equations arising from motions of plane curves, Invent. J. Nonlinear. Sci., 2003, 13:487-517.
[7] Constantin A., On the Cauchy problem for the periodic Camassa-Holm equation, Invent. J. Diff. Eqs., 1997, 141:18-235.
[8] Constantin A., Global existence of solutions and breaking waves for a shallow water equation:A geometric approach, Invent. Ann. Inst. Fourier, 2000, 50:321-362.
[9] Constantin A., On the blow-up of solutions of a periodic shallow water equation, Invent. J. Nonlinear Sci., 2000, 10:391-399.
[10] Constantin A., Escher J., Well-posedness, global existence and blowup phenomena for a periodic quasilinear hyperbolic equation, Invent. Comm. Pure Appl. Math., 1998, 51:475-504.
[11] Constantin A., Ivanov R., On an integrable two-component Camassa-Holm shallow water system, Invent. Phys. Lett. A., 2008, 372:7129-7132.
[12] Constantin A., Johnson R. S., Propagation of very long water wave, with vorticity, over variable depth, with applications to tsunamis, Invent. Fluid Dynam. Res., 2008, 40:175-211.
[13] Constantin A., Lannes D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Invent. Arch. Ration. Mech. Anal., 2009, 192:165-186.
[14] Constantin A., Strauss W. A., Stability of peakons, Invent. Comm. Pure Appl. Math., 2000, 53:603-610.
[15] Constantin A., Strauss W. A., Stability of the Camassa-Holm solitons, Invent. J. Nonlinear Sci., 2002, 12:415-422.
[16] Dullin H. R., Gottwald G. A., Holm D. D., An integrable shallow water equation with linear and nonlinear dispersion, Invent. Phys. Rev. Lett., 2001, 87:194501-194504.
[17] Escher J., Lechtenfeld O., Yin Z., Well-posedness and blow-up phenomena for the 2-component Camassa- Holm equation, Invent. Discrete Contin. Dyn. Syst., 2012, 19:493-513.
[18] Fokas A. S., Liu Q., Asymptotic integrability of water waves, Invent. Phys. Rev. Lett., 1996, 77:2347-2351.
[19] Fuchssteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations:generalizations of the Camassa-Holm equation, Invent. Phys. D., 1996, 95:296-343.
[20] Fuchssteiner B., Fokas A. S., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Invent. Phys. D., 1981, 4:47-66.
[21] Guan C., Yin Z., Global weak solutions for a two-component Camassa-Holm shallow water system, Invent. J. Funct. Anal., 2011, 260:1132-1154.
[22] Gui G., Liu Y., On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, Invent. J. Funct. Anal., 2010, 258:4251-4278.
[23] Gui G., Liu Y., On the Cauchy problem for the two-component Camassa-Holm system, Invent. Math. Z., 2011, 268:45-66.
[24] Guo F., Gao H., Liu Y., On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system, Invent. J. London Math. Soc., 2012, 86:810-834.
[25] Han Y., Guo F., Gao H., On Solitary Waves and Wave-Breaking Phenomena for a Generalized TwoComponent Integrable Dullin-Gottwald-Holm System, Invent. J. Nonlinear Sci., 2013, 23:617-656.
[26] Henry D., Infinite propagation speed for a two component Camassa-Holm equation, Invent. Discrete Contin. Dyn. Syst. Ser. B, 2009, 12:597-606.
[27] Ionescu-Kruse D., Variational derivation of the Camassa-Holm shallow water equation, Invent. J. Nonlinear Math. Phys., 2007, 14:303-312.
[28] Ivanov R., Two-component integrable systems modelling shallow water wave:the constant vorticity case, Invent. Wave Motion, 2009, 46:389-396.
[29] Johnson R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves, Invent. J. Fluid Mech., 2002, 455:63-82.
[30] Johnson R. S., The Camassa-Holm equation for water wave moving over shear flow, Invent. Fluid Dynam. Res., 2003, 33:97-111.
[31] Kouranbaeva S., The Camassa-Holm equations as a geodesic flow on the diffeomorphism group, Invent. J. Math. Phys., 1999, 40:857-868.
[32] Lakshmanan M., Integrable Nonlinear Wave Equations and Possible Connections to Tsunami Dynamics, Springer, Berlin, 2007.
[33] Lenells J., Stability of periodic peakons, Invent. Int. Math. Res. Not., 2004, 10:485-499.
[34] Lenells J., Traveling wave solutions of the Camassa-Holm equation, Invent. J. Diff. Eqs., 2005, 217:393-430.
[35] Liu X., Yin Z., Local well-posedness and stability of peakons for a generalizad Dullin-Gottwald-Holm equation, Invent. Nonlinear Anal. Theor. Methods Appl., 2011, 74:2497-2507.
[36] Lu D., Peng D., Tian L., On the well-posedness problem for the generalized Dullin-Gottwald-Holm equation, Invent. Int. J. Nonlinear Sci., 2006, 3:178-186.
[37] Mckean H. P., Integrable Systems and Algebraic Curves, Springer, Berlin, 1979.
[38] Misiolek G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, Invent. J. Geom. Phys., 1998, 24:203-208.
[39] Nariboli G. A., Nonlinear longitudinal dispersive waves in elastic rods, Invent. J. Math. Phys. Sci., 1970, 4:64-73.
[40] Olver P. J., Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Invent. Phys. Rev. E., 1996, 53:1900-1906.
[41] Popowwicz Z., A 2-component or N=2 supersymmetric Camassa-Holm equation, Invent. Phys. Lett. A., 2006, 354:110-114.
[42] Segur H., Waves in Shallow Water with Emphasis on the Tsunami of 2004, Springer, Berlin, 2007.
[43] Tian L., Gui G., Liu Y., On the Well-Posedness Problem and the Scattering Problem for the Dullin- Gottwald-Holm Equation, Invent. Comm. Math. Phys., 2005, 257:667-701.
[44] Whitham G. B., Linear and Nonlinear Waves, Wiley, New York, 1974.
[45] Yuen M., Self-similar blowup solutions to the 2-component Camassa-Holm equations, Invent.J. Math. Phys., 2011, 52:079901.
[46] Yuen M., Self-similar blowup solutions to the 2-component Degasperis-Procesi shallow water system, Invent.Commun. Nonlinear Sci. Numer. Simulat., 2011, 16:3463-3469.
[47] Yuen M., Perturbational blowup solutions to the 2-component Camassa-Holm equations, Invent. J. Math. Anal. Appl., 2012, 390:596-602.
/
〈 | 〉 |