
Gorenstein范畴上的一个问题
On a Question of Gorenstein Categories
设A是阿贝尔范畴,X是A的子范畴.Sather-Wagstaff,Sharif和White引入了Gorenstein子范畴的概念,记为G(X).我们用PP(相应地,P)代表纯投射R-模类(相应地,投射R-模类).本文给出了一类满足条件“G(P)⊆G(PP)”的环,由此给出了当W是X的子范畴时,G(W)是否包含在G(X)中的一个否定回答.进一步,刻画了包含关系G(P)⊆G(PP)和G(PP)⊆G(P)何时成立.
Let A be an abelian category and X a subcategory of A. Sather-Wagstaff, Sharif and White introduced the Gorenstein subcategory G (X). Denote by PP the class of pure-projective R-modules and by P the class of projective R-modules. We show that there are some rings such that G (P) ⊆ G(PP), which gives a negative answer to the Question that whether G (W) is contained in G (X) provided that W is a subcategory of X. In addition, we give some characterizations of when G (P) ⊆ G (PP) and G (PP) ⊆ G (P) hold.
纯投射模 / Gorenstein投射模 / Gorenstein范畴 {{custom_keyword}} /
pure-projective module / Gorenstein projective module / Gorenstein category {{custom_keyword}} /
[1] Assem I., Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras:Vol. 1:Techniques of Representation Theory, Cambridge University Press, Cambridge, 2006.
[2] Auslander M., Bridger M., Stable Module Theory, Mem. Amer. Math. Soc., Vol. 94, Amer. Math. Soc., Providence, RI, 1969.
[3] Beligiannis A., Cohen-Macaulay modules, (co)torsion pairs, and virtually Gorenstein algebras, J. Algebra, 2005, 288:137-211.
[4] Beligiannis A., On algebras of finite Cohen-Macaulay type, Adv. Math., 2011, 226:1973-2019.
[5] Bennis D., Mahdou N., Ouarghi K., Rings over which all modules are strongly Gorenstein projective, Rocky Moutain J. Math., 2010, 40:749-759.
[6] Christensen L. W., Foxby H. B., Holm H., Derived category methods in commutative algebra, 2017(Preprint), http://www.math.ttu.edu/lchriste/book.html.
[7] Cohn P. M., On the free product of associative rings, Math. Z., 1959, 71:380-398.
[8] Dauns J., Modules and Rings, Cambridge University Press, New York, 1994.
[9] Emmanouil I., On pure acyclic complexes, J. Algebra, 2016, 465:190-213.
[10] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220:611-633.
[11] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, de Gruyter Exp. Math., vol. 30, Walter de Gruyter, New York, 2000.
[12] Enochs E. E., Jenda O. M. G., Lopéz-Ramos J. A., Covers and envelopes by V-Gorenstein modules, Comm. Algebra, 2005, 33:4705-4717.
[13] Goodearl K. R., Von Neumann Regular Rings, Monographs and Studies in Mathematics, No.4, Pitman, London-San Francisco-Melbourne, 1979.
[14] Jensen C. U., Lenzing H., Model Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules, Algebra, Logic and Applications, Vol. 2, Gordon and Breach Science Publishers, New York, 1989.
[15] Lam T. Y., Lecture on Modules and Rings, Graduate Texts Math., vol. 189, Springer-Verlag, New York, 1999.
[16] Moradzadeh-Dehkordi A., On the structure of pure-projective modules and some applications, J. Pure Appl. Algebra, 2007, 221:935-947.
[17] Nicholson W. K., Yousif M. F., Quasi-Frobenius Rings, Cambridge Tracts in Math., vol. 158, Cambridge University Press, Cambridge, 2003.
[18] Sather-Wagstaff S., Sharif T., White D., Stability of Gorenstein categories, J. London Math. Soc., 2008, 77:481-502.
国家自然科学基金(11501257,11671069,11771212);中国博士后科学基金(2016M600426);浙江省自然科学基金(LY18A010032);中国留学基金委资助项目;江苏高校“青蓝工程”资助项目
/
〈 |
|
〉 |