Gorenstein范畴上的一个问题

张东东, 朱海燕, 胡江胜

数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 151-156.

PDF(431 KB)
PDF(431 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 151-156. DOI: 10.12386/A2019sxxb0012
论文

Gorenstein范畴上的一个问题

    张东东1, 朱海燕2, 胡江胜3
作者信息 +

On a Question of Gorenstein Categories

    Dong Dong ZHANG1, Hai Yan ZHU2, Jiang Sheng HU3
Author information +
文章历史 +

摘要

A是阿贝尔范畴,XA的子范畴.Sather-Wagstaff,Sharif和White引入了Gorenstein子范畴的概念,记为GX).我们用PP(相应地,P)代表纯投射R-模类(相应地,投射R-模类).本文给出了一类满足条件“GP)⊆GPP)”的环,由此给出了当WX的子范畴时,GW)是否包含在GX)中的一个否定回答.进一步,刻画了包含关系GP)⊆GPP)和GPP)⊆GP)何时成立.

Abstract

Let A be an abelian category and X a subcategory of A. Sather-Wagstaff, Sharif and White introduced the Gorenstein subcategory G (X). Denote by PP the class of pure-projective R-modules and by P the class of projective R-modules. We show that there are some rings such that G (P) ⊆ G(PP), which gives a negative answer to the Question that whether G (W) is contained in G (X) provided that W is a subcategory of X. In addition, we give some characterizations of when G (P) ⊆ G (PP) and G (PP) ⊆ G (P) hold.

关键词

纯投射模 / Gorenstein投射模 / Gorenstein范畴

Key words

pure-projective module / Gorenstein projective module / Gorenstein category

引用本文

导出引用
张东东, 朱海燕, 胡江胜. Gorenstein范畴上的一个问题. 数学学报, 2019, 62(1): 151-156 https://doi.org/10.12386/A2019sxxb0012
Dong Dong ZHANG, Hai Yan ZHU, Jiang Sheng HU. On a Question of Gorenstein Categories. Acta Mathematica Sinica, Chinese Series, 2019, 62(1): 151-156 https://doi.org/10.12386/A2019sxxb0012

参考文献

[1] Assem I., Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras:Vol. 1:Techniques of Representation Theory, Cambridge University Press, Cambridge, 2006.
[2] Auslander M., Bridger M., Stable Module Theory, Mem. Amer. Math. Soc., Vol. 94, Amer. Math. Soc., Providence, RI, 1969.
[3] Beligiannis A., Cohen-Macaulay modules, (co)torsion pairs, and virtually Gorenstein algebras, J. Algebra, 2005, 288:137-211.
[4] Beligiannis A., On algebras of finite Cohen-Macaulay type, Adv. Math., 2011, 226:1973-2019.
[5] Bennis D., Mahdou N., Ouarghi K., Rings over which all modules are strongly Gorenstein projective, Rocky Moutain J. Math., 2010, 40:749-759.
[6] Christensen L. W., Foxby H. B., Holm H., Derived category methods in commutative algebra, 2017(Preprint), http://www.math.ttu.edu/lchriste/book.html.
[7] Cohn P. M., On the free product of associative rings, Math. Z., 1959, 71:380-398.
[8] Dauns J., Modules and Rings, Cambridge University Press, New York, 1994.
[9] Emmanouil I., On pure acyclic complexes, J. Algebra, 2016, 465:190-213.
[10] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220:611-633.
[11] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, de Gruyter Exp. Math., vol. 30, Walter de Gruyter, New York, 2000.
[12] Enochs E. E., Jenda O. M. G., Lopéz-Ramos J. A., Covers and envelopes by V-Gorenstein modules, Comm. Algebra, 2005, 33:4705-4717.
[13] Goodearl K. R., Von Neumann Regular Rings, Monographs and Studies in Mathematics, No.4, Pitman, London-San Francisco-Melbourne, 1979.
[14] Jensen C. U., Lenzing H., Model Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules, Algebra, Logic and Applications, Vol. 2, Gordon and Breach Science Publishers, New York, 1989.
[15] Lam T. Y., Lecture on Modules and Rings, Graduate Texts Math., vol. 189, Springer-Verlag, New York, 1999.
[16] Moradzadeh-Dehkordi A., On the structure of pure-projective modules and some applications, J. Pure Appl. Algebra, 2007, 221:935-947.
[17] Nicholson W. K., Yousif M. F., Quasi-Frobenius Rings, Cambridge Tracts in Math., vol. 158, Cambridge University Press, Cambridge, 2003.
[18] Sather-Wagstaff S., Sharif T., White D., Stability of Gorenstein categories, J. London Math. Soc., 2008, 77:481-502.

基金

国家自然科学基金(11501257,11671069,11771212);中国博士后科学基金(2016M600426);浙江省自然科学基金(LY18A010032);中国留学基金委资助项目;江苏高校“青蓝工程”资助项目

PDF(431 KB)

Accesses

Citation

Detail

段落导航
相关文章

/