解析Morrey域的若干刻画

金建军, 唐树安

数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 167-176.

PDF(447 KB)
PDF(447 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 167-176. DOI: 10.12386/A2019sxxb0014
论文

解析Morrey域的若干刻画

    金建军1, 唐树安2
作者信息 +

Some Characterizations of Analytic Morrey Domains

    Jian Jun JIN1, Shu An TANG2
Author information +
文章历史 +

摘要

研究了导数的对数属于解析Morrey空间的单叶函数,并建立了解析Morrey域的若干新刻画.

Abstract

We study univalent functions f for which log f' belongs to the analytic Morrey spaces. We establish some new characterizations of the analytic Morrey domains.

关键词

解析Morrey空间 / Schwarz导数 / Grunsky核 / 单叶函数的拟共形延拓

Key words

analytic Morrey spaces / Schwarzian derivative / Grunsky kernel / quasiconformal extension of univalent functions

引用本文

导出引用
金建军, 唐树安. 解析Morrey域的若干刻画. 数学学报, 2019, 62(1): 167-176 https://doi.org/10.12386/A2019sxxb0014
Jian Jun JIN, Shu An TANG. Some Characterizations of Analytic Morrey Domains. Acta Mathematica Sinica, Chinese Series, 2019, 62(1): 167-176 https://doi.org/10.12386/A2019sxxb0014

参考文献

[1] Astala K., Zinsmeister M., Teichmüller spaces and BMOA, Math. Ann., 1991, 289:613-625.
[2] Becker J., Pommerenke C., Über die quasikonforme Fortsetzung schlichter Funktionen, Math. Z., 1978, 161:69-80(in German).
[3] Bishop C., Jones P., Harmonic measure, L2 estimates and the Schwarzian derivative, J. Anal. Math., 1994, 62:77-113.
[4] Cui G., Zinsmeister M., BMO-Teichmüller spaces, Illinois J. Math., 2004, 48:1223-1233.
[5] David G., Courbes corde-arc et espaces de Hardy généralises, Ann. Inst. Fourier, 1982, 32:227-239.
[6] Fan J., Hu J., Holomorphic contraxtibility and other properties of the Weil-Petersson and VMO-Teichmüller space, Ann. Acad. Sci. Fenn. Math., 2016, 41:587-600.
[7] Fan Y., Hu Y., Shen Y., On strongly quasisymmetric homeomorphisms, Ann. Acad. Sci. Fenn. Math., 2017, 42:921-930.
[8] Fefferman R., Kenig C., Pipher J., The theory of weights and the Dirichlet problems for elliptic equations, Ann. Math., 1991, 134:65-124.
[9] Garnett J., Bounded Analytic Functions, Graduate Texts in Mathematics, vol. 236, Springer, Berlin, 2007.
[10] Garnett J., Marshall D., Harmonic Measure, New Math. Monogr., vol. 2, Cambridge Univ. Press, Cambridge, 2005.
[11] Hu Y., Shen Y., On quasisymmetric homeomorphisms, Israel J. Math., 2012, 191:209-226.
[12] Jones P., Homeomorphisms of the line which preserve BMO, Ark. Math., 1983, 21:229-231.
[13] Liu J., Analytic Morrey spaces, Ph.D. thesis, Shantou University, 2014.
[14] Nehari I., The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., 1949, 55:545-551.
[15] Pau J., Peláez J., Logarithms of the derivative of univalent functions in Qp spaces, J. Math. Anal. Appl., 2009, 350:184-194.
[16] Pérez-González F., Rättyä J., Dirichlet and VMOA domains via Schwarzian derivative, J. Math. Anal. Appl., 2009, 359:543-546.
[17] Pommerenke C., Univalent Functions, Vandenhoeck and Ruprecht, 1975.
[18] Semmes S., Quasiconformal mappings and chord-arc curves, Trans. Amer. Math. Soc., 1988, 306:233-263.
[19] Shen Y., Wei H., Universal Teichmüller space and BMO, Adv. Math., 2013, 234:129-148.
[20] Tang S., Wei H., Shen Y., On Douady-Earle extension and the contractibility of the VMO-Teichmüller space, J. Math. Anal. Appl., 2016, 442:376-384.
[21] Wang J., Xiao J., Analytic Campanato spaces by functionals and operators, J. Geom. Anal., 2016, 26:2996-3018.
[22] Wei H., A note on the BMO-Teichmüller space, J. Math. Anal. Appl., 2016, 435:746-753.
[23] Wei H., Shen Y., On the tangent space to the BMO-Teichmüller space, J. Math. Anal. Appl., 2014, 419:715-726.
[24] Wu Z., Xie C., Q spaces and Morrey spaces, J. Funct. Anal., 2003, 201:282-297.
[25] Xiao J., Holomorphic Q Classes, Lecture Notes in Mathematics, vol. 1767, Springer, Berlin, 2001.
[26] Zhao R., Distances from Bloch functions to some Möbius invariant spaces, Ann. Acad. Sci. Fenn. Math., 2008, 33:303-313.
[27] Zhou J., Schwarzian derivative, geometric conditions and QK spaces (in Chinese), Sci. Sin. Math., 2012, 42:939-950.
[28] Zorboska N., Schwarzian derivative and general Besov-type domains, J. Math. Anal. Appl., 2011, 379:48-57.

基金

国家自然科学基金资助项目(11501157,11601100)

PDF(447 KB)

Accesses

Citation

Detail

段落导航
相关文章

/