一类次线性弱耦合系统无穷多个周期解的存在性

王超

数学学报 ›› 2019, Vol. 62 ›› Issue (2) : 201-210.

PDF(514 KB)
PDF(514 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (2) : 201-210. DOI: 10.12386/A2019sxxb0017
论文

一类次线性弱耦合系统无穷多个周期解的存在性

    王超
作者信息 +

The Existence of Infinite Periodic Solutions of a Class of Sub-linear Systems with Weak Coupling

    Chao WANG
Author information +
文章历史 +

摘要

本文研究一类弱耦合系统的周期解问题.在某种关于时间映射的次线性条件下,通过应用 Poincaré–Bohl定理和一个高维版的Poincaré–Birkhoff 扭转不动点定理,分别证明了系统至少存在一个调和解和无穷多个 2- 周期解(m ∈ Z且m>1).

Abstract

We are concerned with the existence of the periodic solutions for a class of weakly coupled systems. Under some sub-linear conditions about time-mapping, we prove the existence of at least one harnomic solution by applying the Poincaré–Bohl theorem and infinite periodic solutions with period 2 to equations by applying the higher dimensional version of the Poincaré–Birkhoff theorem, where m ∈ Z and m>1.

关键词

次线性 / 时间映射 / 耦合系统 / 周期解

Key words

sub-linear / time-mapping / coupled system / periodic solutions

引用本文

导出引用
王超. 一类次线性弱耦合系统无穷多个周期解的存在性. 数学学报, 2019, 62(2): 201-210 https://doi.org/10.12386/A2019sxxb0017
Chao WANG. The Existence of Infinite Periodic Solutions of a Class of Sub-linear Systems with Weak Coupling. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 201-210 https://doi.org/10.12386/A2019sxxb0017

参考文献

[1] Arioli G., Chabrowski J., Periodic motions of a dynamical system consisting of an infinite lattice of particles, Dynam. Systems Appl., 1997, 6(3): 287–396.
[2] Bahri A., Berestycki A., Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math., 1984, 37(4): 403–442.
[3] Boscaggin A., Ortega R., Monotone twist maps and periodic solutions of systems of Duffing type, Mathematical Proceedings of the Cambridge Philosophical Society, 2014, 157(2): 279–296.
[4] Capietto A., Mawhin J., Zanolin F., A continuation approach to superlinear periodic boundary value problem, J. Differential Equations, 1990, 88(2): 347–395.
[5] Ding W., A generalization of the Poincaré–Birkhoff theorem, Proc. Amer. Math. Soc., 1983, 88(2): 341–346.
[6] Ding T., Zanolin F., Subharmonic solution of second order nonlinear equations: a time-map approach, Nonl. Anal. TMA, 1993, 20(5): 509–532.
[7] Fabry C., Habets P., Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math., 1993, 60(3): 266–276.
[8] Fonda A., Sfecci A., Periodic solutions of weakly coupled superlinear systems, J. Differential Equations, 2016, 260(3): 2150–2162.
[9] Fonda A., Ureña A. J., A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 2017, 34(3): 679–698.
[10] Torres P. J., Zanolin F., Periodic motion of a system of two or there charged particles, J. Math. Anal. Appl., 2000, 250(2): 375–386.
[11] Torres P. J., Periodic motions forced infinite lattices with nearest neighbor interaction, Z. Angew. Math. Phys., 2000, 51(3): 333–345.
[12] Torres P. J., Necessary and sufficient conditions for existences of periodic motions of forced systems of particles, Z. Angew. Math. Phys., 2001, 52(3): 535–540.
[13] Wang C., Qian D. B., Periodic motions of a class of forced infinite lattices with nearest neighbor interaction, J. Math. Anal. Appl., 2008, 340(1): 44–52.
[14] Wang C., Qian D. B., The existence of periodic solutions for a class of nonautonomous lattices with boundedcoupling, Nonlinear Anal. TMA, 2009, 71(5): 1438–1444.
[15] Wang C., A continuation approach to the periodic boundary value problem for a class of nonlinear coupled oscillators with potential depending on time, Adv. Nonlinear Stud., 2016, 16(2): 185–196.

基金

国家自然科学基金资助项目(11571249);江苏省自然科学基金资助项目(BK20171275)

PDF(514 KB)

361

Accesses

0

Citation

Detail

段落导航
相关文章

/