
一类次线性弱耦合系统无穷多个周期解的存在性
The Existence of Infinite Periodic Solutions of a Class of Sub-linear Systems with Weak Coupling
本文研究一类弱耦合系统的周期解问题.在某种关于时间映射的次线性条件下,通过应用 Poincaré–Bohl定理和一个高维版的Poincaré–Birkhoff 扭转不动点定理,分别证明了系统至少存在一个调和解和无穷多个 2mπ- 周期解(m ∈ Z且m>1).
We are concerned with the existence of the periodic solutions for a class of weakly coupled systems. Under some sub-linear conditions about time-mapping, we prove the existence of at least one harnomic solution by applying the Poincaré–Bohl theorem and infinite periodic solutions with period 2mπ to equations by applying the higher dimensional version of the Poincaré–Birkhoff theorem, where m ∈ Z and m>1.
次线性 / 时间映射 / 耦合系统 / 周期解 {{custom_keyword}} /
sub-linear / time-mapping / coupled system / periodic solutions {{custom_keyword}} /
[1] Arioli G., Chabrowski J., Periodic motions of a dynamical system consisting of an infinite lattice of particles, Dynam. Systems Appl., 1997, 6(3): 287–396.
[2] Bahri A., Berestycki A., Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math., 1984, 37(4): 403–442.
[3] Boscaggin A., Ortega R., Monotone twist maps and periodic solutions of systems of Duffing type, Mathematical Proceedings of the Cambridge Philosophical Society, 2014, 157(2): 279–296.
[4] Capietto A., Mawhin J., Zanolin F., A continuation approach to superlinear periodic boundary value problem, J. Differential Equations, 1990, 88(2): 347–395.
[5] Ding W., A generalization of the Poincaré–Birkhoff theorem, Proc. Amer. Math. Soc., 1983, 88(2): 341–346.
[6] Ding T., Zanolin F., Subharmonic solution of second order nonlinear equations: a time-map approach, Nonl. Anal. TMA, 1993, 20(5): 509–532.
[7] Fabry C., Habets P., Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math., 1993, 60(3): 266–276.
[8] Fonda A., Sfecci A., Periodic solutions of weakly coupled superlinear systems, J. Differential Equations, 2016, 260(3): 2150–2162.
[9] Fonda A., Ureña A. J., A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 2017, 34(3): 679–698.
[10] Torres P. J., Zanolin F., Periodic motion of a system of two or there charged particles, J. Math. Anal. Appl., 2000, 250(2): 375–386.
[11] Torres P. J., Periodic motions forced infinite lattices with nearest neighbor interaction, Z. Angew. Math. Phys., 2000, 51(3): 333–345.
[12] Torres P. J., Necessary and sufficient conditions for existences of periodic motions of forced systems of particles, Z. Angew. Math. Phys., 2001, 52(3): 535–540.
[13] Wang C., Qian D. B., Periodic motions of a class of forced infinite lattices with nearest neighbor interaction, J. Math. Anal. Appl., 2008, 340(1): 44–52.
[14] Wang C., Qian D. B., The existence of periodic solutions for a class of nonautonomous lattices with boundedcoupling, Nonlinear Anal. TMA, 2009, 71(5): 1438–1444.
[15] Wang C., A continuation approach to the periodic boundary value problem for a class of nonlinear coupled oscillators with potential depending on time, Adv. Nonlinear Stud., 2016, 16(2): 185–196.
国家自然科学基金资助项目(11571249);江苏省自然科学基金资助项目(BK20171275)
/
〈 |
|
〉 |