
奇异积分算子q-变差的定量最优加权估计
Quantitative and Sharp Weighted Estimates for q-Variations of Singular Operators
本文将定量最优Ap权理论推广到联系于ω-Calderón--Zygmund 算子的q-变差情形.这些结果利用了 Lerner 最新给出的稀疏控制方法来控制 q-变差,和 Hytönen 等关于q-变差的最优加权成果相比, 本文涉及的ω仅需满足 Dini 条件, 并且其截断是非光滑的.
In this work we extend the quantitative and sharp weighted bounds for the Ap theorem to the q-variation of ω-Calderón–Zygmund operators. These results make use of the new sparse dominating techniques given recently by Lerner to control the q-variation. Compared with the work of Hytönen etc., which also involved the sharp weighted estimates of q-variations,ω in our case only satisfies the Dini condition, and related cut-off is sharp.
最优加权估计 / 定量估计 / q-变差 / Calderó / n&ndash / Zygmund算子 / 稀疏算子 {{custom_keyword}} /
sharp weighted estimates / quantitative estimates / q-variation / Calderón–Zygmund operators / sparse operators {{custom_keyword}} /
[1] Bourgain J., Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHES, 1989, 68: 5–41.
[2] Campbell J. T., Jones R. L., Reinhold K., et al., Oscillation and variation for the Hilbert transform, Duke Math. J., 2000, 105(1): 59–83.
[3] Campbell J. T., Jones R. L., Reinhold K., et al., Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 2003, 355(5): 2115–2137.
[4] Evans L. C., Gariepy R. F., Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[5] Hytönen T., The sharp weighted bound for general Calderón–Zygmund operators, Ann. of Math. (2), 2012, 175(3): 1473–1506.
[6] Hytönen T., Lacey M., Pérez C., Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc., 2013, 45(3): 529–540.
[7] Hytönen T., Roncal L., Tapiola O., Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math., 2017, 218(1): 133–164.
[8] Jones R. L., Rosenblatt J. M., Wierdl M., Oscillation in ergodic theory: higher dimensional results, Israel J. Math., 2003, 135(1): 1–27.
[9] Lacey M., An elementary proof of the A2 bound, Israel J. Math., 2015, 217(1): 181–195.
[10] Lépingle D., La variation dórdre p des semi-martingales, Z.Wahrscheinlichkeitstheor Verw. Geb., 1976, 36(4): 295–316.
[11] Lerner A. K., On an estimate of Calderón–Zygmund operators by dyadic positive operators, J. Anal. Math., 2013, 121: 141–161.
[12] Lerner A. K., A simple proof of the A2 conjecture, Int. Math. Res. Not. IMRN, 2013, 2013(14): 3159–3170.
[13] Lerner A. K., On pointwise estimates involving sparse operators, New York J. Math., 2016, 22: 341–349.
[14] Ma T., Torrea J. L., Xu Q., Weighted variation inequalities for differential operators and singular integrals, J. Funct. Anal., 2015, 265(2): 545–561.
[15] Ma T., Torrea J. L., Xu Q., Weighted variation inequalities for differential operators and singular integrals in higher dimensions, Sci. China Math., 2017, 60(8): 1419–1442.
[16] Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165(3): 207–226.
[17] Pisier G., Xu Q., The strong p-variation of martingale and orthogonal series, Probab. Theory Related fields, 1988, 77(4): 497–514.
国家自然科学基金资助项目(11671308,11431011)
/
〈 |
|
〉 |