Gorenstein正则环、奇点范畴和Ding模

汪军鹏, 狄振兴

数学学报 ›› 2019, Vol. 62 ›› Issue (2) : 331-344.

PDF(581 KB)
PDF(581 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (2) : 331-344. DOI: 10.12386/A2019sxxb0031
论文

Gorenstein正则环、奇点范畴和Ding模

    汪军鹏1, 狄振兴2
作者信息 +

Gorenstein Regular Rings, Singularity Categories and Ding Modules

    Jun Peng WANG1, Zhen Xing DI2
Author information +
文章历史 +

摘要

本文证明了任意环的整体 Ding 投射维数和整体Ding 内射维数一致, 研究了奇点范畴和相对于 Ding模的稳定范畴间的关系, 并刻画了 Gorenstein(正则)环以及环的整体维数的有限性.

Abstract

We prove that the global Ding projective dimension and global Ding injective dimension coincide for any ring. We investigate the relationship between singularity categories and stable categories with respect to Ding modules, and characterize Gorenstein (regular) rings and the finiteness of left global dimension of rings in terms of singularity categories and Ding modules.

关键词

Gorenstein 正则环 / Ding 投射模 / 奇点范畴

Key words

Gorenstein regular ring / Ding projective module / singularity category

引用本文

导出引用
汪军鹏, 狄振兴. Gorenstein正则环、奇点范畴和Ding模. 数学学报, 2019, 62(2): 331-344 https://doi.org/10.12386/A2019sxxb0031
Jun Peng WANG, Zhen Xing DI. Gorenstein Regular Rings, Singularity Categories and Ding Modules. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 331-344 https://doi.org/10.12386/A2019sxxb0031

参考文献

[1] Bao Y. H., Du X. N., Zhao Z. B., Gorenstein singularity categories, J. Algebra, 2015, 428: 122–137.
[2] Beligiannis A., The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co)stabilization, Comm. Algebra, 2000, 28: 4547–4596.
[3] Bennis D., Hu K., Wang F. G., Gorenstein analogue of Auslander's theorem on the global dimension, Comm. Algebra, 2015, 43: 174–181.
[4] Bennis D., Mahdou N., Global Gorenstein dimensions, Proc. Amer. Math., 2010, 138: 461–465.
[5] Buchweitz R. O., Maximal cohen-macaulay modules and Tate cohomology over Gorenstein rings, 1987, unpublished manuscript, 155pp. Available at https://tspace.library.utoronto.ca/handle/1807/16682.
[6] Chen X. W., Homotopy equivalences induced by balanced pairs, J. Algebra, 2010, 324: 2718–2731.
[7] Ding N. Q., Li Y. L., Mao L. X., Strongly Gorenstein flat modules, J. Aust. Math. Soc., 2009, 86: 323–338.
[8] Emmanouil I., On the finiteness of Gorenstein homological dimensions, J. Algebra, 2012, 372: 376–396.
[9] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220: 611–633.
[10] Enochs E. E., Cortés-Izurdiaga M., Torrecillas B., Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra, 2014, 218: 1544–1554.
[11] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter and Co., Berlin, 2000.
[12] Gillespie J., Model Structures on Modules over Ding–Chen rings, Homotopy Homology Appl., 2010, 12: 61–73.
[13] Happel D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series Vol. 119, Cambridge University Press, Cambridge, 1988.
[14] Happel D., On Gorenstein Algebras, Progress in Mathematics, Birkh Auser Verlag, Basel, 1991, Vol. 95, 389–404.
[15] Holm H., Gorenstein Homological Algebra, PhD thesis, University of Copenhagen, Denmark, 2004.
[16] Holm H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 2004, 189: 167–193.
[17] Iwanage Y., On rings with finite self-injective dimension, Comm. Algebra, 1979, 7: 393–414.
[18] Lam T. Y., Lectures on modules and rings, Springer Science & Business Media, 2012.
[19] Mao L. X., Ding N. Q., Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl., 2008, 4: 497–506.
[20] Orlov D., Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math., 2004, 246: 227–248.
[21] Rickard J., Derived categories and stable equivalence, J. Pure Appl. Algebra, 1989, 61: 303–317.
[22] Wang Z. P., Liu Z. K., Strongly Gorenstein flat dimensions of complexes, Comm. Algebra, 2016, 44: 1390– 1410.
[23] Yang C. H., Strongly Gorenstein flat and Gorenstein FP-injective modules, Turkish J. Math., 2013, 37: 218–230.
[24] Yang G., Homological properties of modules over Ding-Chen rings, J. Korean Math. Soc., 2012, 49: 31–47.
[25] Yang G., Liu Z. K., Liang L., Ding projective and Ding injective modules, Algebra Colloq., 2013, 20: 601–612.
[26] Zhang C. X., Liu Z. K., Rings with finite Ding homological dimensions, Turk. J. Math., 2015, 39: 37–48.
[27] Zhang P., Triangulated Categories and Derived Categories (in Chinese), Science Press, Beijing, 2015.

基金

国家自然科学基金资助项目(11601433);中国博士后自然科学基金资助项目(2106M602945XB)

PDF(581 KB)

594

Accesses

0

Citation

Detail

段落导航
相关文章

/