复形的#-内射包络的存在性

梁力, 杨刚

数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 391-396.

PDF(402 KB)
PDF(402 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 391-396. DOI: 10.12386/A2019sxxb0037
论文

复形的#-内射包络的存在性

    梁力, 杨刚
作者信息 +

The Existence of #-injective Envelopes of Complexes

    Li LIANG, Gang YANG
Author information +
文章历史 +

摘要

dwI表示所有#-内射左R-模复形构成的类(即内射左R-模的复形构成的类).本文证明了在左诺特环R上(dwI),dwI)是完备的内射余挠对.特别地,我们得到每个左R-模复形都有#-内射包络.作为应用,证明了在左诺特环R上,每个左R-模复形都有特殊EtacI)-预包络,其中EtacI)是所有内射左R-模的完全零调复形构成的类.

Abstract

Let dwI denote the class of #-injective complexes of left R-modules (i.e., complexes of injective left R-modules). We prove that over left noetherian rings R, the pair ((dwI), dwI) is a perfect injective cotorsion pair. In particular, we get that every complex of left R-modules has a #-injective envelope. As an application, we prove that over left noetherian rings R, every complex of left R-modules has a special Etac (I)-preenvelope, where Etac (I) is the class of complete acyclic complexes of injective left R-modules.

关键词

#-内射复形 / 覆盖 / 包络 / 余挠对

Key words

#-injective complex / cover / envelope / cotorsion pair

引用本文

导出引用
梁力, 杨刚. 复形的#-内射包络的存在性. 数学学报, 2019, 62(3): 391-396 https://doi.org/10.12386/A2019sxxb0037
Li LIANG, Gang YANG. The Existence of #-injective Envelopes of Complexes. Acta Mathematica Sinica, Chinese Series, 2019, 62(3): 391-396 https://doi.org/10.12386/A2019sxxb0037

参考文献

[1] Enochs E. E., Injective and flat covers, envelopes and resolvents, Israel J. Math., 1981, 39:189-209.
[2] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, Walter de Gruyter, Berlin-New York, 2000.
[3] Enochs E. E., Jenda O. M. G., López-Ramos J. A., The existence of Gorenstein flat covers, Math. Scand., 2004, 94:46-62.
[4] Enochs E. E., Jenda O. M. G., Xu J., Orthogonality in the category of complexes, Math. J. Okayama Univ., 1996, 38:25-46.
[5] García Rozas J. R., Covers and Envelopes in the Category of Complexes of Modules, CRC Press, Boca Raton-London-New York-Washington, D.C., 1999.
[6] Gillespie J., Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., 2016, 291:859-911.
[7] Iacob A., DG-injective covers, #-injective covers, Comm. Algebra, 2011, 39:1673-1685.
[8] Liang L., Ding N., On #-injective complexes, J. Algebra Appl., 2012, 11:1250021(22 pages).
[9] Liang L., Ding N., Yang G., Covers and envelopes by #-F complexes, Comm. Algebra, 2011, 39:3253-3277.
[10] Yang G., Liu Z., Cotorsion pairs and model structures on Ch(R), Proc. Edinb. Math. Soc., 2011, 54:783-797.

基金

国家自然科学基金资助项目(11761045,11561039);甘肃省自然科学基金资助项目(18JR3RA113,17JR5RA091);兰州交通大学"百名青年优秀人才培养计划"基金资助项目

PDF(402 KB)

Accesses

Citation

Detail

段落导航
相关文章

/