伪自伴量子系统的酉演化与绝热定理

黄永峰, 曹怀信, 王文华

数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 469-478.

PDF(550 KB)
PDF(550 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 469-478. DOI: 10.12386/A2019sxxb0044
论文

伪自伴量子系统的酉演化与绝热定理

    黄永峰1,2, 曹怀信1, 王文华3
作者信息 +

Unitary Evolution and Adiabatic Theorem of Pseudo Self-adjoint Quantum Systems

    Yong Feng HUANG1,2, Huai Xin CAO1, Wen Hua WANG3
Author information +
文章历史 +

摘要

经典量子系统的哈密尔顿是自伴算子.哈密尔顿算符的自伴性不仅确保了系统遵循酉演化,而且也保证了它自身具有实的能量本征值.但是,确实有一些物理系统,其哈密尔顿是非自伴的,但也具有实的能量本征值.这种具有非自伴哈密尔顿的系统就是非自伴量子系统.具有伪自伴哈密尔顿的系统是一类特殊的非自伴量子系统,其哈密尔顿相似于一个自伴算子.本文研究伪自伴量子系统的酉演化与绝热定理.首先,给出了伪自伴算子定义及其等价刻画;其次,对于伪自伴哈密尔顿系统,通过构造新内积,证明了伪自伴哈密尔顿在新内积下是自伴的,并给出了系统在新内积下为酉演化的充分必要条件.最后,建立了伪自伴量子系统的绝热演化定理及与绝热逼近定理.

Abstract

Hamiltonian of a classical quantum system is a self-adjoint operator. The self-adjoint property of a Hamiltonian not only ensures that the system follows unitary evolution, but also ensures that it has real energy eigenvalues. However, there exist indeed some physical systems, their Hamiltonians are nonself-adjoint, but also have real energy eigenvalues. The systems with nonself-adjoint Hamiltonians are called nonself-adjoint quantum systems (NSAQSs). The systems with pseudo self-adjoint Hamiltonians are a special class of NSAQSs, their Hamiltonians are similar to selfadjoint operators. In this paper, we discuss unitary evolution and adiabatic theorem of pseudo self-adjoint quantum systems (PSAQSs). First, pseudo self-adjoint operators are defined and characterized. Second, a given time-dependent pseudo self-adjoint Hamiltonian H(t) is self-adjoint with respect to a new time-dependent inner product, and then a condition for the system to be unitary evolving under the new inner product is derived. Last, adiabatic evolving theorem and adiabatic approximation theorem for a PSAQS are proved.

关键词

伪自伴算子 / 伪自伴哈密尔顿 / 酉演化 / 绝热演化定理 / 绝热逼近定理

Key words

pseudo self-adjoint operator / pseudo self-adjoint Hamiltonian / unitary evolution / adiabatic evolving theorem / adiabatic approximation theorem

引用本文

导出引用
黄永峰, 曹怀信, 王文华. 伪自伴量子系统的酉演化与绝热定理. 数学学报, 2019, 62(3): 469-478 https://doi.org/10.12386/A2019sxxb0044
Yong Feng HUANG, Huai Xin CAO, Wen Hua WANG. Unitary Evolution and Adiabatic Theorem of Pseudo Self-adjoint Quantum Systems. Acta Mathematica Sinica, Chinese Series, 2019, 62(3): 469-478 https://doi.org/10.12386/A2019sxxb0044

参考文献

[1] Ashok D., Pseudo-Hermitian quantum mechanics, J. Phys. Conf. Ser., 2011, 287(1):012002.
[2] Bender C. M., Boettcher S., Real spectra in non-Hermitian Hamiltonians having P T -symmetry, Phys. Rev. Lett., 1998, 80(24):5243-5246.
[3] Bender C. M., Berry M. V., Mandilara A., Generalized P T -symmetry and real spectra, J. Phys. A:Math. Gen., 2002, 35(31):L467-L471.
[4] Bender C. M., Brody D. C., Jones H. F., Must a Hamiltonian be Hermitian? Amer. J. Phys., 2003, 71(11):1095-1102.
[5] Bender C. M., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 2007, 70:947-1018.
[6] Born M., Fock V., Beweis des adiabatensatzes, Z. Phys., 1928, 51:165-180.
[7] Cao H. X., Guo Z. H., Foundation of Wavelet Analysis, Science Press, Beijing, 2016.
[8] Cao H. X., Guo Z. H., Chen Z. L., et al., Quantitative sufficient condition for adiabatic approximation, Sci. China-Phys. Mech. Astron., 2013, 56(7):1401-1407.
[9] Chen L., Cao H. X., Meng H. X., Generalized duality quantum computers acting on mixed states, Quantum Inf. Process., 2015, 14(11):4351-4360.
[10] Guo Z. H., Cao H. X., Lu L., Adiabatic approximation in P T -symmetric quantum mechanics, Sci. ChinaPhys. Mech. Astron., 2014, 57(10):1835-1839.
[11] Kato T., On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Jpn., 1950, 5:435-439.
[12] Long G. L., General quantum interference principle and duality computer, Commun. Theor. Phys., 2006, 45(5):825-844.
[13] Long G. L., Duality quantum computing and duality quantum information processing, Int. J. Theor. Phys., 2011, 50(4):1305-1318.
[14] Longhi S., Fisica D. D., Time reversal of a discrete system coupled to a continuum based on non-Hermitian flip, Sci. Bull., 2017, 62(12):869-874.
[15] Marzlin K. P., Sanders B. C., Inconsistency in the application of the adiabatic theorem, Phys. Rev. Lett., 2004, 93(16):160408.
[16] Mostafazadeh A., Pseudo-Hermiticity versus P T -symmetry:The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys., 2001, 43(1):205-214.
[17] Mostafazadeh A., Pseudo-Hermiticity versus P T -Symmetry Ⅱ:A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys., 2002, 43(5):2814-2816.
[18] Mostafazadeh A., Pseudo-Hermiticity versus P T -symmetry Ⅲ:Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys., 2002, 43(8):3944-3951.
[19] Mostafazadeh A., Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys., 2010, 7(7):1191-1306.
[20] Nenciu G., On the adiabatic theorem of quantum mechanics, J. Phys. A:Math. Gen., 1980, 13(2):L15-L18.
[21] Qiang X. G., Zhou X. Q., Aungskunsiri K., et al., Quantum processing by remote quantum control, Quantum Sci. Technol., 2017, 2:045002.
[22] Tong D. M., Singh K., Kwek L. C., et al., Sufficiency criterion for the validity of the adiabatic approximation, Phys. Rev. Lett., 2007, 98(15):150402.
[23] Wang W. H., Cao H. X., Chen Z. L., Adiabatic approximation theorem for the evolution by an A-uniformly pseudo-Hermitian Hamiltonian, Theor. Math. Phys., 2017, 192(3):1219-1233.
[24] Yu B. M., Cao H. X., Guo Z. H., et al., Computable upper bounds for the adiabatic approximation errors, Sci. China-Phys. Mech. Astron., 2014, 57(11):2031-2038.
[25] Zheng C., Hao L., Long G. L., Observation of a fast evolution in a parity-time-symmetric system, Philos. Trans. A Math. Phys. Eng. Sci., 2013, 371(1989):20120053.

基金

国家自然科学基金(11871318,11771009,11601300,11571213);中央高校基本科研业务费专项资金(GK20181020,GK201801011)及陕西省自然科学基础研究计划(2018JM1020)

PDF(550 KB)

Accesses

Citation

Detail

段落导航
相关文章

/