状态依赖时滞非局部扩散方程的波前解
Traveling Wave Fronts for the Nonlocal Dispersal Equation with State-dependent Delay
本文主要研究状态依赖时滞非局部扩散方程的波前解,当出生函数单调时,可以得到单调行波解的存在性和非存在性,然后,由先验估计和Ikehara定理,进一步得到临界波前解的渐近性;当出生函数非单调时,通过引进两个辅助拟单调方程,也可以得到相应非拟单调条件下的存在性结果.
This paper is concerned with traveling waves for the nonlocal dispersal equation with the state-dependent delay. If the birth function is monotone, then the existence and nonexistence of monotone traveling waves are established. By a prior estimate and Ikehara's Theorem, we obtain the asymptotic behavior of critical traveling wave fronts. Finally, by introducing two auxiliary quasi-monotone equations, we improve our results of existence to the non-quasi-monotone equation.
波前解 / 非局部扩散 / 状态依赖时滞 / Schauder不动点定理 {{custom_keyword}} /
traveling wave Fronts / nonlocal dispersal / state-dependent delay / Schauder's fixed point theorem {{custom_keyword}} /
[1] Aiello W. G., Freedman H. I., Wu J., Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 1992, 52(3):855-869.
[2] Al-Omari J., Gourley S., Dynamics of a stage-structured population model incorporating a state-dependent maturation delay, Nonlinear Anal. Real World Appl., 2005, 6(1):13-33.
[3] Al-Omari J., Tallafha A., Modelling and analysis of stage-structured population model with state-dependent maturation delay and harvesting, Int. J. Math. Analysis, 2007, 1(8):391-407.
[4] Alt W., Some periodicity criteria for functional differential equations, Manuscripta Math., 1978, 23(3):295-318.
[5] Alt W., Periodic Solutions of some Autonomous Differential Equations with Variable Time Delay, In:Functional Differential Equations and Appr. of Fixed Points, Lecture Notes in Math., 730, Springer, Berlin, 1979, 16-31.
[6] Andrewartha H. G., Birch L. C., The Distribution and Abundance of Animals, University of Chicago Press, Chicago, IL, 1954.
[7] Arino O., Hadeler K. P., Hbid M. L., Existence of periodic solutions for delay differential equations with state dependent delay, J. Differential Equation, 1998, 144(2):263-301.
[8] Bates P. W., Fife P. C., Ren X., et al., Travelling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 1997, 138(2):105-136.
[9] Carr J., Chmaj A., Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 2004, 132(8):2433-2439.
[10] Coville J., On uniqueness and monotonicity of solutions of nonlocal reaction diffusion equation, Ann. Mat. Pura Appl., 2006, 185(3):461-485.
[11] Coville J., Dupaigne L., On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh, 2007, 137(4):727-755.
[12] Driver R. D., Existence theory for a delay-differential system, Contrib. Differential Equations, 1963, 1:317-336.
[13] Gambell R., Bonner W. N., Walton D. W. H., Birds and Mammals-Antarctic Whales, in Antarctica, New York, 1985, 223-241.
[14] Hale J. K., Verduyn Lunel S. M., Theory of Functional Differential Equations, Springer, New York, 1993.
[15] Hartung F., Krisztin T., Walther H. O., et al., Functional diferential equations with state-dependent delays:Theory and applications, In:Handbook of Differential Equations:Ordinary Differential Equations, Elsevier, 2006, 435-545.
[16] Krisztin T., Rezounenko A., Parabolic partial differential equations with discrete state-dependent delay:Classical solutions and solution manifold, J. Differential Equations, 2016, 260(5):4454-4472.
[17] Lee C. T., Hoopes M. F., Diehl J., et al., Non-local concepts in models in biology, J. Theor. Biol., 2001, 210(2):201-219.
[18] Lin G., Wang H. Y., Traveling wave solutions of reaction-diffusion equation with state-dependent delay, Comm. Pure Appl. Anal., 2016, 15(2):319-334.
[19] Lutscher F., Lewis M., Spatially-explicit matrix models a mathematical analysis of stage-structured integrodifference equations, J. Math. Biol., 2004, 48(3):293-324.
[20] Medlock J., Kot M., Spreading disease:integro-differential equations old and new, Math. Biosci., 2003, 184(2):201-222.
[21] Lv Y., Yuan R., He Y., Wavefronts of a stage structured model with state-dependent delay, Discrete Contin. Dyn. Syst., 2015, 35(10):4931-4954.
[22] Lv Y., Yuan R., Pei Y., Smoothness of semiflows for parabolic partial differential equations with statedependent delay, J. Differential Equations, 2016, 260(7):6201-6231.
[23] Mallet-Paret J., Nussbaum R. D., Boundary layer phenomena for differential-delay equations with statedependent time lags I, Arch. Rational Mech. Anal., 1992, 120(120):99-146.
[24] Mallet-Paret J., Nussbaum R. D., Boundary layer phenomena for differential-delay equations with statedependent time lags Ⅱ, J. Reine Angew. Math., 1996, 477:129-197.
[25] Mallet-Paret J., Nussbaum R. D., Paraskevopoulos P., Periodic solutions for functional-differential with multiple state dependent time lags, Topol. Methods Nonlinear Anal., 1994, 3(1):101-162.
[26] Pan S., Li W. T., Lin G., Traveling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys, 2009, 60(3):377-392.
[27] Walther H. O., Stable periodic motion of a system with state dependent delay, Differential Integral Equations, 2002, 15(8):923-944.
[28] Walther H. O., The solution manifold and C1-smoothness for differential equations with state-dependent delay, J. Differential Equations, 2003, 195(1):46-65.
[29] Widder D. V., The Laplace Transform, Princeton University Press, Princeton, 1941.
[30] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
[31] Zhang G. B., Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 2011, 74(15):5030-5047.
[32] Zhang G. B., Ma R. Y., Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, Z. Angew. Math. Phys, 2014, 65(5):819-844.
[33] Yu Z. X., Yuan R., Traveling waves of a nonlocal dispersal delayed age-structured population model, Japan J. Indust. Appl. Math., 2013, 30(1):165-184.
[34] Yu Z. X., Yuan R., Existence, asymptotic and uniqueness of traveling waves for nonlocal diffusion systems with delayed nonlocal response, Taiwanese J. Math., 2013, 17(6):2163-2190.
上海自然科学基金资助项目(18ZR1426500)
/
〈 | 〉 |