一个与Dedekind和相关的新和式及其在特殊点的值

王婷婷, 关雅靓

数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 497-502.

PDF(377 KB)
PDF(377 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (3) : 497-502. DOI: 10.12386/A2019sxxb0046
论文

一个与Dedekind和相关的新和式及其在特殊点的值

    王婷婷, 关雅靓
作者信息 +

A New Sum Related to Dedekind Sums and Its Values in Some Special Integers

    Ting Ting WANG, Ya Liang GUAN
Author information +
文章历史 +

摘要

本文利用正整数模q的正则数的定义以及解析方法研究一类与Dedekind和有关的和式的计算问题,并给出这个和式在一些特殊点上有趣的恒等式.

Abstract

The aim of this paper is to use the definition of the regular integers modulo a positive integer q and the analytic method to study the computational problem of one kind sums related to Dedekind sums, and give some interesting identities for the sums at some special integer points.

关键词

Dedekind和 / 正则数 / 解析方法 / 恒等式

Key words

Dedekind sums / the regular integers / analytic method / identity

引用本文

导出引用
王婷婷, 关雅靓. 一个与Dedekind和相关的新和式及其在特殊点的值. 数学学报, 2019, 62(3): 497-502 https://doi.org/10.12386/A2019sxxb0046
Ting Ting WANG, Ya Liang GUAN. A New Sum Related to Dedekind Sums and Its Values in Some Special Integers. Acta Mathematica Sinica, Chinese Series, 2019, 62(3): 497-502 https://doi.org/10.12386/A2019sxxb0046

参考文献

[1] Apostol T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Apostol T. M., Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York, 1976.
[3] Carlitz L., The reciprocity theorem for Dedekind sums, Pacific J. Math., 1953, 3:523-527.
[4] Conrey J. B., Eric F., Robert K., et al., Mean values of Dedekind sums, Journal of Number Theory, 1996, 56:214-226.
[5] Mordell L. J., The reciprocity formula for Dedekind sums, Amer. J. Math., 1951, 73:593-598.
[6] Rademacher H., On the transformation of log η(τ), J. Indian Math. Soc., 1955, 19:25-30.
[7] Rademacher H., Grosswald E., Dedekind Sums, Carus Mathematical Monographs, Math. Assoc. Amer., Washington D. C., 1972.
[8] Ramanujan S., On certain trigonometric sums and their applications in the theory of numbers, Trans. Cambridge Philos. Soc., 1918, 22:259-276.
[9] Tóth L., Regular integers modulo n, Annales Univ. Sci. Budapest. Comp., 2008, 29:263-275.
[10] Tóth L., A gcd-sum function over regular integers modulo n, J. Integer Seq., 2009, 12, Article 09.
[11] Zhang W., A note on the mean square value of the Dedekind sums, Acta Mathematica Hungarica, 2000, 86:275-89.
[12] Zhang W., On the mean values of Dedekind Sums, Journal de Théorie des Nombres de Bordeaux, 1996, 8:429-442.
[13] Zhang W. P., On a note of one class mean square value of L-functions, Journal of Northwest University, Natural Science Edition, 1990, 20:9-12.
[14] Zhang W., Liu Y., A hybrid mean value related to the Dedekind sums and Kloosterman sums, Science China Mathematics, 2010, 53:2543-2550.
[15] Zhang W. P., Li H. L., Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2008.

基金

国家自然科学基金资助项目(11501452);中央高校基本科研业务费专项资金

PDF(377 KB)

Accesses

Citation

Detail

段落导航
相关文章

/