
Brown运动增量在Hölder范数下的局部泛函Chung重对数律
Local Functional Chung's Law of the Iterated Logarithm for Increments of a Brownian Motion in Hölder Norm
本文利用Brown运动在Hölder范数下的大偏差和小偏差,得到了Brown运动增量在Hölder范数下的局部泛函Chung重对数律.
Using large deviation and small deviation of Brownian motion in Hölder norm, local functional Chung's law of the iterated logarithm for increments of a Brownian motion in Hölder norm can be obtained.
Brown运动 / 增量 / 局部泛函Chung重对数律 / Hö / lder范数 {{custom_keyword}} /
Brownian motion / increments / local functional Chung's law of the iterated logarithm / Hölder norm {{custom_keyword}} /
[1] De Acosta A., On the functional form of Lévy's modulus of continuity for Brownian motion, Z. W. V. Gebiete, 1985, 69:567-579.
[2] Baldi P., Ben Arous G., Kerkyacharian G., Large deviations and the Strassen's theorem in Hölder norm, Stochastic Process Appl., 1992, 42(1):171-180.
[3] Baldi P., Roynette B., Some exact equivalents for the Brownian motion in Hölder norm, Probab. Theory Relat. Fields, 1992, 93:457-484.
[4] Gao F., Wang Q., The rate of convergence in the functional limit theorem for increments of a Brownian motion, Statist. & Probab. Lett., 2005, 73:165-177.
[5] Liu Y., Li L., Wan C., The rate of convergence for increments of a Brownian motion in Hölder norm, Statist. & Probab. Lett., 2009, 79:1463-1472.
[6] Lucas A., Fractales aléatoires de type Chung pour les accroissements du processus de Wiener, C. R. Acad. Sci. Paris, Ser. I, 1998, 326:1123-1126.
[7] Lucas A., Thilly E., Loi de type Chung en norme de Hölder pour les accroissements locaux du mouvement Brownien. C. R. Acad. Sci. Paris, Ser. I, 2003, 336:1029-1032.
[8] Wei Q., Functional modulus of continuity for Brownian motion in Hölder norm, Chin. Ann. of Math., 2001, 22B(2):223-232.
国家自然科学基金资助项目(11661025)
/
〈 |
|
〉 |