矩阵型截面数据时间序列自回归模型

吴述金, 华楠

数学学报 ›› 2022, Vol. 65 ›› Issue (6) : 1093-1104.

PDF(599 KB)
PDF(599 KB)
数学学报 ›› 2022, Vol. 65 ›› Issue (6) : 1093-1104. DOI: 10.12386/A20190057
论文

矩阵型截面数据时间序列自回归模型

    吴述金, 华楠
作者信息 +

Autoregression Model of Time Series with Matrix Cross-Section Data

    Shu Jin WU, Nan HUA
Author information +
文章历史 +

摘要

矩阵型截面数据时间序列的优点在于可以同时刻画多个对象的多个属性.本文重点研究了矩阵型截面数据时间序列的自回归模型,给出了该模型的参数估计、模型识别、白噪声检验三个方面的理论结果.最后再利用矩阵型截面数据时间序列自回归模型,对两支银行股的日收益率序列和日成交量变化率序列进行建模分析.

Abstract

The advantage of time series with matrix cross-section data is that multiple attributes of multiple objects can be characterized simultaneously. This paper focuses on autoregression model of time series with matrix cross-section data and presents the methods of parameter estimation, model identification and white noise test. Finally, the daily yield series and daily volume change rate series of two bank stocks are analyzed by this model.

关键词

矩阵型截面数据时间序列 / 参数估计 / 似然比检验 / 白噪声检验

Key words

time series with matrix cross-section data / parameter estimation / likelihood ratio test / white noise test

引用本文

导出引用
吴述金, 华楠. 矩阵型截面数据时间序列自回归模型. 数学学报, 2022, 65(6): 1093-1104 https://doi.org/10.12386/A20190057
Shu Jin WU, Nan HUA. Autoregression Model of Time Series with Matrix Cross-Section Data. Acta Mathematica Sinica, Chinese Series, 2022, 65(6): 1093-1104 https://doi.org/10.12386/A20190057

参考文献

[1] Antognini J. F., Buonocore M. H., Disbrow E. A., et al., Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study, Life Sciences, 1997, 61(24): 349–54.
[2] Bollerslev T., Generalized autoregressive conditional heteroskedasticity, Eeri Research Paper, 1986, 31(3): 307–327.
[3] Box G. E. P., Jenkins G. M., Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, 1970.
[4] Engle R. F., Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 1982, 50(4): 987–1007.
[5] Engle R. F., Granger C. W. J., Co-integration and error correction: representation, estimation, and testing, Econometrica, 1987, 55(2): 251–276.
[6] Fu K. B., Study on the Theory and Applications of AR(p) Model for Matrix Cross-Section Data Time Series (in Chinses), East China Normal University, Shanghai, 2018.
[7] Hamilton J. D., Time Series Analysis (in Chinese), Xia Xiaohua, Translator, China Renmin University Press, Beijing, 2015.
[8] Lütkepohl H., Introduction to Multiple Time Series Analysis, Springer, Berlin, 2014.
[9] Samadi Yaser S., Matrix Time Series Analysis, Ph.D. Dissertation, Athens, GA: The University of Georgia, 2014.
[10] Tiao G. C., Box G. E. P., Modeling multiple times series with applications, Journal of the American Statistical Association, 1981, 76(376): 802–816.
[11] Walker G. T., Seasonal weather and its prediction, Brit. Assoc. Adv. Sci., 1933, 103: 25–44.
[12] Walden A., Serroukh A., Wavelet analysis of matrix-valued time series, Proc. R. Soc. Lond. A, 2002, 458: 157–179.
[13] Wang D., Liu X. L., Chen R., Factor models for matrix-valued high-dimensional time series, Journal of Econometrics, 2019, 208(1): 231–248.
[14] Wang H., West M., Bayesian analysis of matrix normal graphical models, Biometrika, 2009, 96(4): 821–834.
[15] Yule G. U., On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers, Philosophical Transactions of the Royal Society of London, 1927, 226: 267–298.

基金

国家自然科学基金资助项目(11471120)
PDF(599 KB)

736

Accesses

0

Citation

Detail

段落导航
相关文章

/