带超级光滑噪声密度函数的小波自适应点态估计

吴聪, 曾晓晨, 王晋茹

数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 687-702.

PDF(673 KB)
PDF(673 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 687-702. DOI: 10.12386/A2019sxxb0064
论文

带超级光滑噪声密度函数的小波自适应点态估计

    吴聪, 曾晓晨, 王晋茹
作者信息 +

Wavelet Adaptive Pointwise Density Estimations with Super-smooth Noises

    Cong WU, Xiao Chen ZENG, Jin Ru WANG
Author information +
文章历史 +

摘要

利用小波方法在局部Hölder空间中研究一类反卷积密度函数的点态估计问题.首先,针对超级光滑噪声给出该模型任一估计器的点态风险下界;其次,构造有限求和小波估计器,并证明其在超级光滑噪声条件下达到了最优收敛阶,即该估计器在点态风险下的收敛速度与下界一致.最后,还讨论了这类小波估计器的强收敛性.值得指出的是上述估计都是自适应的.

Abstract

This paper considers pointwise deconvolution estimation of density functions under the local Hölder condition by wavelet method. We firstly give a lower bound of any estimator with super-smooth noises. Then the practical linear wavelet estimator is constructed to obtain the optimal convergence rate, which means that the rate coincides with the lower bound. The strong convergence rate of the defined wavelet estimator is also provided. It should be pointed out that all above estimations are adaptive.

关键词

小波 / 点态密度估计 / 自适应 / 最优性

Key words

wavelets / pointwise density estimation / adaptivity / optimality

引用本文

导出引用
吴聪, 曾晓晨, 王晋茹. 带超级光滑噪声密度函数的小波自适应点态估计. 数学学报, 2019, 62(5): 687-702 https://doi.org/10.12386/A2019sxxb0064
Cong WU, Xiao Chen ZENG, Jin Ru WANG. Wavelet Adaptive Pointwise Density Estimations with Super-smooth Noises. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 687-702 https://doi.org/10.12386/A2019sxxb0064

参考文献

[1] Carroll R. J., Hall P., Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc., 1988, 83(404):1184-1186.
[2] Comte F., Lacour C., Anisotropic adaptive kernel deconvolution, Ann. Inst. H. Poincaré Probab. Statist., 2013, 49(2):569-609.
[3] Devore R., Kerkyacharian G., Picard D., et al., Approximation methods for supervised learning, Found. Comput. Math., 2006, 6(1):3-58.
[4] Devroye L., Lugosi G., Combinatorial Methods in Density Estimation, Springer, New York, 2001.
[5] Donoho D. L., Unconditional bases are optimal bases for data compression and for statistical estimation, Appl. Comput. Harmon. Anal., 1993, 1(1):100-115.
[6] Donoho D. L., Johnstone I. M., Kerkyacharian G., et al., Wavelet Shrinkage:Asymptopia? J. Roy. Statist. Soc. Ser. B, 1995, 57(2):301-369.
[7] Donoho D. L., Johnstone I. M., Kerkyacharian G., et al., Density estimation by wavelet thresholding, Ann. Statist, 1996, 24(2):508-539.
[8] Efromovich S., Nonparametric Curve Estimation:Methods, Theory and Applications, Springer-Verlag, New York, 1999.
[9] Fan J., On the optimal rate of convergence for nonparametric deconvolution problems, Ann. Statist., 1991, 19(3):1257-1272.
[10] Fan J., Koo J., Wavelet deconvolution, IEEE Trans. Inform. Theory, 2002, 48(3):734-747.
[11] Härdle W., Kerkyacharian G., Picard D., et al., Wavelets, Approximation and Statistical Applications, Springer-Verlag, New York, 1998.
[12] Hu L., Zeng X. C., Wang J. R., Wavelet optimal estimations for a two-dimensional continuous-discrete density function over Lp risk, J. Inequal. Appl., 2018, 2018:279, 20 pp.
[13] Li Q., Racine J. S., Nonparametric Econometrics:Theory and Practice, Princeton, Princeton University Press, 2007.
[14] Li R., Liu Y. M., Wavelet optimal estimations for a density with some additive noises, Appl. Comput. Harmon. Anal., 2014, 36(3):416-433.
[15] Liu Y. M., Xu J. L., On the Lp-consistency of wavelet estimators, Acta Math. Sin. Engl. Ser., 2016, 32(7):765-782.
[16] Liu Y. M., Zeng X. C., Strong Lp convergence of wavelet deconvolution density estimators, Anal. Appl. Singap, 2018, 16(2):183-208.
[17] Liu Y. M., Zeng X. C., Asymptotic normality of wavelet deconvolution density estimators, Appl. Comput. Harmon. Anal., 2018, DOI:10.1016/j.acha.2018.05.006.
[18] Lounici K., Nickl R., Global uniform risk bounds for wavelet deconvolution estimators, Ann. Statist, 2011, 39(1):201-231.
[19] Meister A., Deconvolution Problems in Nonparametric Statistics, Springer-Verlag, Berlin, 2009.
[20] Pensky M., Vidakovic B., Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist, 1999, 27(6):2033-2053.
[21] Stefanski L., Carrol R. J., Deconvoluting kernel density estimators, Statistics, 1990, 21(2):169-184.
[22] Tsybakov A. B., Introduction to Nonparametric Estimation, Springer, New York, 2009.
[23] Walnut David F., An Introduction to Wavelet Analysis, Birkhäuser, Boston, 2004.
[24] Walter G. G., Density estimation in the presence of noise, Statist. Probab. Lett., 1999, 41:237-246.
[25] Zeng X. C., A note on wavelet deconvolution density estimation, Int. J. Wavelets Multiresolut. Inf. Process, 2017, 15(6):1750055, 12 pp.
[26] Zeng X. C., Wang J. R., Wavelet density deconvolution estimations with heteroscedastic measurement errors, Statist. Probab. Lett., 2018, 134:79-85.

基金

国家自然科学基金(11771030);北京市自然科学基金(1172001);北京市博士后工作经费(ZZ2019-77);北京工业大学基础研究基金(006000546319511,006000546319528)

PDF(673 KB)

399

Accesses

0

Citation

Detail

段落导航
相关文章

/