渐近Teichmüller空间的不唯一性

黄志勇, 周泽民

数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 703-708.

PDF(415 KB)
PDF(415 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 703-708. DOI: 10.12386/A2019sxxb0065
论文

渐近Teichmüller空间的不唯一性

    黄志勇, 周泽民
作者信息 +

Nonuniqueness Properties on Asymptotic Teichmuller Space

    Zhi Yong HUANG, Ze Min ZHOU
Author information +
文章历史 +

摘要

AT(Δ)是单位圆盘Δ上所有渐近Teichmüller等价类[[μ]]或[[fμ]]构成的渐近Teichmüller空间.本文证明了对AT(Δ)内的任意渐近极值的fμ,总存在一个[[fμ]]内的渐近极值映射gν,使边界伸缩商h*μf?g-1gz))})≠0.同时也获得了AT(Δ)在基点处的切空间上的类似结果.

Abstract

Let AT (Δ) be the asymptotic Teichmüller space on the unit disk Δ, viewed as the space of all asymptotic Teichmüller equivalence classes[[μ]] or[[f μ]]. It is shown that, for each asymptotically extremal[[f μ]] in AT (Δ), there exists an asymptotically extremal gν in[[f μ]] such that the boundary dilatation h*(μf?g-1(g(z))) =0. A parallel result in the tangent space to AT (Δ) at the basepoint is also obtained.

关键词

Teichmü / ller空间 / 拟共形映射 / 极值映射 / 渐近Teichmü / ller空间

Key words

Teichmüller space / quasiconformal mappings / extremal quasiconformal mappings / asymptotic Teichmüller space

引用本文

导出引用
黄志勇, 周泽民. 渐近Teichmüller空间的不唯一性. 数学学报, 2019, 62(5): 703-708 https://doi.org/10.12386/A2019sxxb0065
Zhi Yong HUANG, Ze Min ZHOU. Nonuniqueness Properties on Asymptotic Teichmuller Space. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 703-708 https://doi.org/10.12386/A2019sxxb0065

参考文献

[1] Ahlfors L. V., Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966.
[2] Bo?in V., Lakic N., Markovi? V., et al., Unique extremality, J. Anal. Math., 1998, 75:299-338.
[3] Earle C. J., Gardiner F. P., Lakic N., Asymptotic Teichmüller spaces. Part I. The complex structure, Contemp. Math., 2000, 256:17-38.
[4] Earle C. J., Gardiner F. P., Lakic N., Asymptotic Teichmüller spaces, Part Ⅱ, the metric structure, Contemp. Math., 2004, 355:187-219.
[5] Earle C. J., Kra I., Krushkal S., Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc., 1994, 343:927-948.
[6] Earle C. J., Li Z., Isometrically embedded polydisks in infinite dimensional Teichmüller spaces, J. Geom. Anal., 1999, 9:51-71.
[7] Earle C. J., Markovic V., Saric D., Barycentric extension and the Bers embedding for asymptotic Teichmüller spaces, Contemp. Math., 2002, 311:85-105.
[8] Fan J., On geodesics in asymptotic Teichmüller spaces, Math. Z., 2011, 267:767-779.
[9] Fletcher A., On asymptotic Teichmüller space, Trans. Amer. Math. Soc., 2010, 362(5):2507-2523.
[10] Fletcher A., Markovic V., Quasiconformal Maps and Teichmüller Theory, Oxford University Press, New York, 2007.
[11] Gardiner F. P., Lakic N., Quasiconformal Teichmüller Spaces, Math. Surveys and Monographs, Vol. 76, American Mathematical Society, Providence, 2000.
[12] Gardiner F. P., Sullivan D. P., Symmetric structures on a closed curve, Amer. J. Math., 1992, 114:683-736.
[13] Lakic N., Substantial boundary points for plane domains and Gardiner's conjecture, Ann. Acad. Sci. Fenn. Math., 2000, 25:285-306.
[14] Li Z., Nonuniqueness of geodesics in infinite-dimensional Teichmüller spaces, Complex Var. Theory Appl., 1991, 16:261-272.
[15] Li Z., Nonuniqueness of geodesics in infinite-dimensional Teichmüller spaces Ⅱ, Ann. Acad. Sci. Fenn. Ser. A I Math., 1993, 18:355-367.
[16] Li Z., Non-convexity of spheres in infinite-dimensional Teichmüller spaces, Sci. China Ser. A, 1994, 37:924-932.
[17] Li Z., A note on geodesics in infinite-dimensional Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. A I Math., 1995, 20:301-313.
[18] Li Z., Closed geodesics and non-differentiability of the metric in infinite-dimensional Teichmüller spaces, Proc. Amer. Math. Soc., 1996, 124:1459-1465.
[19] Miyachi H., On invariant distances on asymptotic Teichmüller spaces, Proc. Amer. Math. Soc., 2006, 134:1917-1925.
[20] Miyachi H., Image of asymptotic Bers map, J. Math. Soc. Japan, 2008, 60:1255-1276.
[21] Qi Y., Wu Y., On nonuniqueness of geodesics and geodesic disks in the universal asymptotic Teichmüller space, Acta Math. Sin., Engl. Series, 2017, 33(2):201-209.
[22] Shen Y., Some remarks on the geodesics in infinite-dimensional Teichmüller spaces, Acta Mathematica Sinica, New Series, 1997, 13(3):497-502.
[23] Shen Y., On the geometry of infinite-dimensional Teichmüller spaces, Acta Mathematica Sinica, New Series, 1997, 13(3):413-420.
[24] Shen Y., On Teichmüller geometry, Complex Var. Theory Appl., 2001, 44:73-83.
[25] Tanigawa H., Holomorphic families of geodesic discs in infinite-dimensional Teichmüller spaces, Nagoya Math. J., 1992, 127:117-128.
[26] Yao G., On infinitesimally weakly non-decreasable Beltrami differentials, arXiv:1610.09313.
[27] Zhou Z., On extremal quasiconformal mapping of landslide type, Chinese J. Contemporary Math., 2011, 32:279-284.
[28] Zhou Z., Chen J., On geodesics in asymptotic universal Teichmüller space, Proc. Edin. Math. Soc., 2016, 59(4):1065-1074.

基金

国家自然科学基金资助项目(11571362,11371045)

PDF(415 KB)

397

Accesses

0

Citation

Detail

段落导航
相关文章

/