推广的韩-刘-张反常消去公式

王勇, 吴彤

数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 721-736.

PDF(510 KB)
PDF(510 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 721-736. DOI: 10.12386/A2019sxxb0067
论文

推广的韩-刘-张反常消去公式

    王勇, 吴彤
作者信息 +

Generalized Han-Liu-Zhang's Anomaly Cancellation Formulas

    Yong WANG, Tong WU
Author information +
文章历史 +

摘要

在[Anomaly cancellation and modularity,Frontiersin Differential Geometry,Partial Differential Equations and Mathematical Physics,2014:87-104,World Sci.Publ.,Hackensack,NJ]中,韩-刘-张给出了一个反常消去公式,推广了Green-Schwarz公式和Schwartz-Witten公式.本文研究了两个推广的韩-刘-张公式和一个奇数维的韩-刘-张公式.通过研究一些示性式的模性质,给出了奇数维新的反常消去公式.

Abstract

In[Anomaly cancellation and modularity, Frontiers in Differential Geometry, Partial Differential Equations and Mathematical Physics, 2014:87-104, World Sci. Publ., Hackensack, NJ], Han-Liu-Zhang gave a anomaly cancellation formula which generalized the Green-Schwarz formula and the Schwartz-Witten formula. In this paper, we give two generalized Han-Liu-Zhang formulas and a Han-Liu-Zhang formula in odd dimension is also given. By studying modular invariance properties of some characteristic forms, some new anomaly cancellation formulas in odd dimension are given.

关键词

模不变性 / 韩-刘-张消去公式 / 奇数维反常消去公式

Key words

modular invariance / the Han-Liu-Zhang cancellation formula / anomaly cancellation formulas in odd diemnsion

引用本文

导出引用
王勇, 吴彤. 推广的韩-刘-张反常消去公式. 数学学报, 2019, 62(5): 721-736 https://doi.org/10.12386/A2019sxxb0067
Yong WANG, Tong WU. Generalized Han-Liu-Zhang's Anomaly Cancellation Formulas. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 721-736 https://doi.org/10.12386/A2019sxxb0067

参考文献

[1] Chandrasekharan K., Elliptic Functions, Spinger-Verlag, 1985.
[2] Chen Q., Han F., Modular invariance and twisted anomaly cancellations of characteristic numbers, Trans. Amer. Math. Soc., 2009, 361:1463-1493.
[3] Green M. B., Schwarz J. H., Anomaly cancellations in supersymmetric d=10 gauge theory and superstring theory, Physics Letters B, 1984, 149:117-122.
[4] Han F., Liu K., Zhang W., Anomaly cancellation and modularity, Frontiers in Differential Geometry, Partial Differential Equations and Mathematical Physics, 2014:87-104, World Sci. Publ., Hackensack, NJ.
[5] Han F., Liu K., Zhang W., Modular Forms and Generalized Anomaly Cancellation Formulas, J. Geom. Phys., 2012, 62(5):1038-1053.
[6] Han F., Yu J., On the Witten rigidity theorem for odd dimensional manifolds, arXiv:1504.03007.
[7] Han F., Zhang W., Modular invariance, characteristic numbers and eta Invariants, J. Diff. Geom., 2004, 67:257-288.
[8] Liu K., Modular invariance and characteristic numbers, Commu. Math. Phys., 1995, 174:29-42.
[9] Liu K., Wang Y., A note on modular forms and generalized anomaly cancellation formulas, Sci. China Math., 2013, 56(1):55-65.
[10] Liu K., Wang Y., Modular invariance and anomaly cancellation formulas in odd dimension, J. Geom. Phys., 2016, 99:190-200.
[11] Liu K., Wang Y., Modular invariance and anomaly cancellation formulas in odd dimension Ⅱ, Acta Math. Sin. Engl. Ser., 2017, 33(4):455-469.
[12] Schwarz J. H., Witten E., Anomaly analysis and brane-antibrane system, JHEP, 2001, 3, Paper 32, 26 pp.
[13] Zhang W., Lectures on Chern-weil Theory and Witten Deformations, Nankai Tracks in Mathematics, Vol. 4, World Scientific, Singapore, 2001.

基金

国家自然科学基金资助项目(11771070)

PDF(510 KB)

Accesses

Citation

Detail

段落导航
相关文章

/