带形上近临界随机游动的常返暂留性

张美娟, 周珂

数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 737-744.

PDF(518 KB)
PDF(518 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 737-744. DOI: 10.12386/A2019sxxb0068
论文

带形上近临界随机游动的常返暂留性

    张美娟1, 周珂2
作者信息 +

Recurrence Classification of Random Walk on a Strip: Near-critical

    Mei Juan ZHANG1, Ke ZHOU2
Author information +
文章历史 +

摘要

本文研究带形上的近临界随机游动,借助游动常返暂留性判别准则的显式表达,通过带扰动的线性差分系统的解的渐近性理论,以及矩阵的范数性质,在扰动矩阵不同的阶的条件下,给出了游动常返暂留性的判别.

Abstract

Consider the near-critical random walk on a strip. By the explicit criteria for recurrence and transience, with the help of asymptotic theory of the solution of linear difference system with disturbance, and the propositions of matrix norm, we give a recurrence classification in terms of the order of the perturbation matrix.

关键词

带形上的随机游动 / 近临界 / 常返暂留性 / 线性差分系统

Key words

random walk on a strip / near-critical / recurrence and transience / linear difference system

引用本文

导出引用
张美娟, 周珂. 带形上近临界随机游动的常返暂留性. 数学学报, 2019, 62(5): 737-744 https://doi.org/10.12386/A2019sxxb0068
Mei Juan ZHANG, Ke ZHOU. Recurrence Classification of Random Walk on a Strip: Near-critical. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 737-744 https://doi.org/10.12386/A2019sxxb0068

参考文献

[1] Benzaid Z., Lutz D. A., Asymptotic representation of solutions of perturbed systems of linear difference equations, Stud. Appl. Math., 1987, 77:195-221.
[2] Durrett R., Probability:Theory and Examples, 3rd Edition, Duxbury, 2004.
[3] Georgiou N., Wade A. R., Non-homogeneous random walks on a semi-infinite strip, Stoch. Process. Appl., 2014, 124:3179-3205.
[4] Hong W. M., Zhang M. J., Branching structure for the transient random walk on a strip in a random environment, Chinese Journal of Contemporary Math., 2016, 37(4):347-362.
[5] Hong W. M., Zhang M. J., Zhao Y. Q., Light-tailed behavior of stationary distribution for state-dependent random walks on a strip, Front. Math. China, 2014, 9(4):813-834.
[6] Hong W. M., Zhou K., Tail asymptotic of the stationary distribution for the state dependent (1, R)-reflecting random walk:near critical, arXiv:1302.3069v2, 2013.
[7] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge University Press, Cambridge, 1990.
[8] Levinson N., The asymptotic nature of solutions of linear differential equations, Duke Math. J., 1948, 15:111-126.
[9] Lo C. K., Wade A. R., Non-homogeneous random walks on a half strip with generalized Lamperti drifts, Markov Process. Related Fields, 2017, 23(1):125-146.
[10] Krámli A., Szász D., Random walks with internal degrees of freedom, I., Local limit theorems, Z. Wahrsche. Verw. Gebiete, 1983, 63:85-95.
[11] Neuts M. F., Stuctured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, Inc., New York, 1989.
[12] Resnick S., Adventures in Stochastic Processes, Birkhäuser Boston Inc., Boston, MA, 1992.

基金

国家自然科学基金资助项目(11801596,11701083);中央财经大学科研创新团队支持计划资助

PDF(518 KB)

Accesses

Citation

Detail

段落导航
相关文章

/