涉及移动目标的亚纯映射唯一性定理

刘志学, 张庆彩

数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 783-794.

PDF(561 KB)
PDF(561 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (5) : 783-794. DOI: 10.12386/A2019sxxb0072
论文

涉及移动目标的亚纯映射唯一性定理

    刘志学, 张庆彩
作者信息 +

Uniqueness Theorem on Meromorphic Mappings with Few Moving Targets

    Zhi Xue LIU, Qing Cai ZHANG
Author information +
文章历史 +

摘要

本文首先证明了一个新的从Cn到PN(C)的亚纯映射第二基本定理,其中涉及到带有不同权重的截断型计算函数;其次利用这个新的第二基本定理,考虑了退化的亚纯映射在分担处于一般位置的移动超平面下的唯一性问题,并在较弱的条件下获得了一个唯一性结果,改进了已有的一些经典结果.

Abstract

In this paper, concerning some truncated counting functions with different weights, we prove a new second main theorem for meromorphic mappings from Cn into PN (C). By using the new second main theorem, we consider the uniqueness problem for the case of degenerate meromorphic mappings sharing moving hyperplanes located in general position, and a uniqueness result is obtained under some weak conditions, which can be seen as an improvement of previous well-known results.

关键词

唯一性 / 退化 / 亚纯映射 / 移动超平面

Key words

uniqueness / degenerate / meromorphic mappings / moving hyperplanes

引用本文

导出引用
刘志学, 张庆彩. 涉及移动目标的亚纯映射唯一性定理. 数学学报, 2019, 62(5): 783-794 https://doi.org/10.12386/A2019sxxb0072
Zhi Xue LIU, Qing Cai ZHANG. Uniqueness Theorem on Meromorphic Mappings with Few Moving Targets. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 783-794 https://doi.org/10.12386/A2019sxxb0072

参考文献

[1] Cao H. Z., Algebraical dependence and uniqueness problem for meromorphic mappings with few moving targets, Bull. Malays. Math. Sci. Soc., 2018, 41(2):837-853.
[2] Cao T. B., Yi H. X., Uniqueness theorems for meromorphic mappings sharing hyperplanes in general position (in Chinese), Sci. Sin. Math., 2011, 41:135-144.
[3] Chen Z. H., Yan Q. M., Uniqueness theorem of meromorphic mappings into PN (C) sharing 2N+3 hyperplanes regardless of multiplicities, Intern. J. Math., 2009, 20(6):717-726.
[4] Fujimoto H., The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 1975, 58:1-23.
[5] Giang H. H., Uniqueness theorem for meromorphic mappings with multiple values, Kodai Math. J., 2018, 41(1):115-124.
[6] Liu Z. X., Zhang Q. C., Difference uniqueness theorems on meromorphic functions in several variables, Turk. J. Math., 2018, 42(5):2481-2505.
[7] Lü F., The uniqueness problem for meromorphic mappings with truncated multiplicities, Kodai Math. J., 2012, 35(3):485-499.
[8] Nevanlinna R., Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math., 1926, 48(3):367-391.
[9] Quang S. D., Second main theorems with weighted counting functions and algebraic dependence of meromorphic mappings, Proc. Amer. Math. Soc., 2016, 144(10):4329-4340.
[10] Quang S. D., Second main theorems for meromorphic mappings intersecting moving hyperplanes with truncated counting functions and unicity problem, Abh. Math. Semin. Univ. Hamburg, 2016, 86(1):1-18.
[11] Quang S. D., Second main theorems for meromorphic mappings and moving hyperplanes with truncated counting functions, Oroc. Amer. Math. Soc., 2019, 147(4):1657-1669.
[12] Ru M., Nevanlinna theory and Its Relation to Diophantine Approximation, World Scientific, River Edge, NJ, 2001.
[13] Smiley L., Geometric conditions for unicity of holomorphic curves, Contemp. Math., 1983, 25:149-154.

基金

国家留学基金资助项目(201806360222)

PDF(561 KB)

Accesses

Citation

Detail

段落导航
相关文章

/