线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解

文娅琼, 李姣芬, 黎稳

数学学报 ›› 2019, Vol. 62 ›› Issue (6) : 833-852.

PDF(624 KB)
PDF(624 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (6) : 833-852. DOI: 10.12386/A2019sxxb0076
论文

线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解

    文娅琼1, 李姣芬2, 黎稳3
作者信息 +

The Least-square Solutions to the Linear Matrix Equations AX=B, YA=D with (R,Sσ)-commutative Matrices

    Ya Qiong WEN1, Jiao Fen LI2, Wen LI3
Author information +
文章历史 +

摘要

Trench在[Characterization and properties of(R,Sσ)-commutative matrices, Linear Algebra Appl.,2012, 436:4261-4278]中给出了(R,Sσ)-交换矩阵的定义.本文在此基础上讨论(R,Sσ)-交换矩阵的一般性结构,对给定的矩阵X,Y,B,D,以及线性方程组AX=BYA=D在(R,Sσ)-交换矩阵集合中的最小二乘问题及最佳逼近问题.细致分析最小二乘(R,Sσ)-交换解和最佳逼近解的具体解析表达式.同时在方程组相容情况下分析(R,Sσ)-交换解存在的充要条件及其具体解析表达式.

Abstract

Trench gave the definition of the (R,Sσ)-commutative matrix in[Characterization and properties of (R,Sσ)-commutative matrices, Linear Algebra Appl., 2012, 436:4261-4278]. This paper discusses the general structure of (R,Sσ)-commutative matrix, and the least squares problem and the best approximation problem of linear equations AX=B, YA=D in the set of (R,Sσ)-commutative matrices for given matrix X, Y, B, D. Then we analysis the expressions of the least-square commutative solution and the best approximate solution of (R,Sσ)-commutative matrix in detail. At the same time, the necessary and sufficient conditions for the existence of the (R,Sσ)-commutative solution are analyzed when the linear matrix equations is consistent.

关键词

(R / S&sigma / )-交换矩阵 / 最小二乘解 / 最佳逼近解

Key words

(R,Sσ)-commutative matrices / least squares solution / optimal approximate

引用本文

导出引用
文娅琼, 李姣芬, 黎稳. 线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解. 数学学报, 2019, 62(6): 833-852 https://doi.org/10.12386/A2019sxxb0076
Ya Qiong WEN, Jiao Fen LI, Wen LI. The Least-square Solutions to the Linear Matrix Equations AX=B, YA=D with (R,Sσ)-commutative Matrices. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 833-852 https://doi.org/10.12386/A2019sxxb0076

参考文献

[1] Andrew A. L., Centrosymmetric matrices, SIAM Rev., 1998, 40:697-698.
[2] Chen H. C., Generalized reflexive matrices:special properties and applications, SIAM J. Matrix Anal. A, 1998, 19:140-153.
[3] Fasino D., Circulative properties revisited:algebraic properties of a generalization of cyclicmatrices, Italian J. Pure Appl. Math., 1998, 4:33-43.
[4] Li J. F., Hu X. Y., Procrustes problems and associated approximation problems for matrices with k-involutory symmetries, Linear Algebra Appl., 2011, 434:820-829.
[5] Li J. F., Hu X. Y., Zhang L., Inverse and optimal approximation problems and perturbation analysis for (R, S, μ)-symmetric (in Chinese), Math. Numer. Sin., 2012, 34:25-36.
[6] Peng Z. Y., Hu X. Y., The reflexive and anti-reflexive solutions of the matrix equation AX=B, Linear Algebra Appl., 2003, 375:147-155.
[7] Trench W. F., Characterization and properties of (R,Sσ)-commutative matrices, Linear Algebra Appl., 2012, 436:4261-4278.
[8] Trench W. F., Characterization and properties of (R, S)-symmetric, (R, S)-skewsymmetric, and (R, S)-conjugatematrices, SIAM J. Matrix Anal. A, 2005, 26:748-757.
[9] Trench W. F., Characterization and properties of matrices with k-involutory symmetries, Linear Algebra Appl., 2008, 429:2278-2290.
[10] Trench W. F., Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra Appl., 2010, 432:2782-2797.
[11] Trench W. F., Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl., 2004, 389:23-31.
[12] Trench W. F., Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 2004, 377:207-218.
[13] Trench W. F., Inverse eigenproblems and associated approximation problems formatrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 2004, 380:199-211.
[14] Trench W. F., Inverse problems for unilevel block α-circulants, Numer. Linear. Algebr., 2011, 20:349-356.
[15] Trench W. F., Properties of unilevel block circulants, Linear Algebra Appl., 2009, 430:2012-2025.
[16] Xu W. R., Chen G. L., The solutions to linear matrix equations AX=B, Y A=D with k-involutory symmetries, Comput. Math. Appl., 2017, 73:1741-1759.
[17] Xu W. R., Chen G. L., Gong Y., Procrustes problems and inverse eigenproblems for multilevel block α-circulants, Numer. Linear. Algebr., 2016, 23:906-930.
[18] Zhou F. Z., Hu X. Y., Zhang L., The solvability conditions for the inverse eigenvalue problems of centrosymmetric matrices, Linear Algebra Appl., 2003, 364:147-160.
[19] Zhou F. Z., The solvability conditions for the inverse eigenvalue problems of reflexive matrices, J. Comput. Appl. Math., 2006, 188:180-189.
[20] Zhang J. C., Zhou S. Z., Hu X. Y., The (P, Q) generalized reflexive and anti-reflexive solutions of the matrix equation AX=B, Appl. Math. Comput., 2009, 209:254-258.

基金

国家自然科学基金资助项目(11761024,11561015,11671158,U1811464);广西自然科学基金资助项目(2016GXNSFAA380074,2016GXNSFFA380009,2017GXNSFBA198082);桂林电子科技大学研究生优秀学位论文培育项目(17YJPYSS24)

PDF(624 KB)

1156

Accesses

0

Citation

Detail

段落导航
相关文章

/