相对于子范畴的同伦分解的存在性

马鑫, 杨晓燕

数学学报 ›› 2020, Vol. 63 ›› Issue (1) : 77-88.

PDF(547 KB)
PDF(547 KB)
数学学报 ›› 2020, Vol. 63 ›› Issue (1) : 77-88. DOI: 10.12386/A2020sxxb0006
论文

相对于子范畴的同伦分解的存在性

    马鑫1, 杨晓燕2
作者信息 +

The Existence of Homotopy Resolutions Relative to the Subcategory

    Xin MA1, Xiao Yan YANG2
Author information +
文章历史 +

摘要

本文证明了在相对于子范畴的情形下上有界复形的同伦分解的存在性,推广了经典的复形的同伦分解,是使得相对导出范畴具有可操作性的基础.进一步,证明了在R-模范畴和相对于特殊子范畴的情形下,任意无界复形的同伦分解的存在性.最后,建立了同伦范畴和相对导出范畴的(余)局部化序列.

Abstract

Let X be a subcategory of an abelian category A. We proceed by generalizing the homotopy resolutions of complexes to the relative version, which is important basis making the relative derived category operational. We prove that every bounded above complex has a dg X resolution. Furthermore, we also show that the existence of resolutions for any unbounded complex when A=R-Mod and X is a particular subcategory. Finally, we establish a colocalization sequence of the homotopy category K(A) involving the relative derived category DX (A) under some condition.

关键词

dg X分解 / (余)局部化序列 / 相对导出范畴

Key words

dg X resolution / (co)locolization sequence / relative derived category

引用本文

导出引用
马鑫, 杨晓燕. 相对于子范畴的同伦分解的存在性. 数学学报, 2020, 63(1): 77-88 https://doi.org/10.12386/A2020sxxb0006
Xin MA, Xiao Yan YANG. The Existence of Homotopy Resolutions Relative to the Subcategory. Acta Mathematica Sinica, Chinese Series, 2020, 63(1): 77-88 https://doi.org/10.12386/A2020sxxb0006

参考文献

[1] Asadollahi J., Hafezi R., Gorenstein derived equivalences and their invariants, J. Pure Appl. Algebra, 2014, 218:888-903.
[2] Asadollahi J., Hafezi R., On relative derived categories, http://arxiv.org/abs/1311.2189.
[3] Beligiannis A., The homological theory of contravariantly finite subcategories:Auslander-Buchweitz contexts, Gorenstein categories and (co)stabilization, Comm. Algebra, 2000, 28:4547-4596.
[4] Bravo D., Gillespie J., Hovey M., The stable module category of a general ring, http://arxiv.org/abs/1405.5768.
[5] Chen X. W., Homotopy equivalences induced by balanced pairs, J. Algebra, 2010, 324:2718-2731.
[6] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, Springer-Verlag, New York, 2000.
[7] Enochs E. E., López-ramos J. A., Kaplanksy classes, Rend. Sem. Mat. Univ. Padova, 2002, 107:67-79.
[8] Gao N., Stable t-structures and homotopy category of Gorenstein-projective modules, J. Algebra, 2010, 324:2503-2011.
[9] Gao N., Zhang P., Gorenstein derived categories, J. Algebra, 2010, 323:2041-2057.
[10] Gillespie J., Model structures on modules over Ding-chen rings, Homology, Homo. Appl., 2010, 12:61-73.
[11] Hoshino M., Derived categories, www.u-gakugei.ac.jp/miyachi/papers/DC1.pdf.
[12] Keller B., Derived categories and their uses, In:Handbook of Algebra Vol. 1, Elsevier, 1996.
[13] Miyach J., Localization of triangulated categories and derived categories, J. Algebra, 1991, 141:463-483.
[14] Murfet D., Dereived categories part I, http://www.therisingsea.org/notes/DerivedCategories.pdf.
[15] Parshall B., Scott L. L., Derived Categories, Quasi-hereditary Algebras and Algebraic Grooups, Proceedings of the Ottawa-Moosonee Workshop in Algebra, 1987.
[16] Ren W., Liu Z. K., Yang G., Derived categories with respect to Ding modules, J. Algebra Appl., 2013, 12.
[17] Spaltenstein N., Resolutions of unbounded complexes, Compositio Math., 1988, 65:121-154.
[18] Verdier J. L., Des Catégories Dérivées des Catégories Abéliennes, Astrisque 239, Societ Mathematique de France, Pairs, 1996.
[19] Zhang P., Triangulated Categories and Derived Categories, Beijing, 2015.
[20] Zheng Y. F., Huang Z. Y., On pure derived categories, J. Algebra, 2016, 454:252-272.

基金

国家自然科学基金资助项目(11761060);甘肃省高等学校科研项目(2018B-036)

PDF(547 KB)

450

Accesses

0

Citation

Detail

段落导航
相关文章

/