p-adic 超几何函数与 Dwork超曲面上的有理点
p-adic Hypergeometric Functions and Rational Points on Dwork Hypersurfaces
p-adic超几何函数是经典的Gauss超几何函数在有限域上的模拟,与许多数论问题都有联系.设Fq是q元有限域,λ∈Fq,n为正整数.本文研究了Dwork超曲面Dλn:x1n+x2n+…+xnn=nλx1x2…xn及其推广形式上的Fq-有理点,并在n与q(q-1)互素时给出了由p-adic超几何函数表示的各种Fq-有理点个数的公式,从而修正和改进了Barman与Goodson等人的结论.
p-adic hypergeometric functions are hypergeometric functions over finite fields analogous to the classical Gaussian hypergeometric functions, which have been found applications in diverse number theory problems. Let Fq be the finite field of q elements, λ ∈ Fq and n be a positive integer. This paper investigates the Fq-rational points on the Dwork hypersurface Xλn:x1n+x2n+…+xnn=nλx1x2…xn as well as its generalized form, and provides the formula for the number of the Fq-rational points in terms of a p-adic hypergeometric function when n and q(q-1) are coprime, which revises and improves the results given by Barman and Goodson et al.
p-adic超几何函数 / Gauss和 / Dwork超曲面 {{custom_keyword}} /
p-adic hypergeometric function / Gauss sum / Dwork hypersurface {{custom_keyword}} /
[1] Ahlgren S., Ono K., A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math., 2000, 518:187-212.
[2] Barman R., Rahman H., Saikia N., Counting points on Dwork hypersurfaces and p-adic hypergeometric functions, Bull. Aust. Math. Soc., 2016, 94:208-216.
[3] Barman R., Saikia N., McCarthy D., Summation identities and special values of hypergeometric series in the p-adic setting, J. Number Theory, 2015, 153:63-84.
[4] Berndt B. C., Evans R. J., Williams K. S., Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998.
[5] Chen J. M., Cao W., Smith normal form of augmented degree matrix and rational points on toric hypersurface, Algebra Colloquium, 2013, 20:327-332.
[6] Dwork B., On the rationality of the zeta function of an algebraic variety, Amer. J. Math., 1960, 82:631-648.
[7] Dwork B., On the zeta function of a hypersurface, Publ Math. IHES., 1962, 12:5-68.
[8] Dwork B., p-adic Cycles, Publ Math. IHES., 1969, 37:27-115.
[9] Fuselier J., Hypergeometric functions over Fp and relations to elliptic curves and modular forms, Proc. Amer. Math. Soc., 2010, 138:109-123.
[10] Goodson H., Hypergeometric functions and relations to Dwork hypersurfaces, Int. J. Number Theory, 2017, 13:439-485.
[11] Greene J., Hypergeometric functions over finite fields, Trans. Amer. Math. Soc., 1987, 301:77-101.
[12] Greene J., Hypergeometric functions over finite fields and representations of SL(2; q), Rocky Mountain J. Math., 1993, 23:547-568.
[13] Gross B. H., Koblitz N., Gauss sums and the p-adic Γ-function, Ann. Math., 1979, 109(2):569-581.
[14] Harris M., Shepherd-Barron N., Taylor R., A family of Calabi-Yau varieties and potential automorphy, Ann. Math., 2010, 171:779-813.
[15] Hong S. F., L-functions of twisted diagonal exponential sums over finite fields, Proc. Amer. Math. Soc., 2007, 135:3099-3108.
[16] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, GTM 84, Springer-Verlag, New York, 1982.
[17] Katz N. M., Exponential Sums and Differential Equations, Princeton Univ. Press, Princeton, 1990.
[18] Koblitz N., p-adic Numbers, p-adic Analysis and Zeta Functions, GTM 58, Springer-Verlag, New York, 1996.
[19] Lidl R., Niederreiter H., Finite Fields, Cambridge Univ. Press, Cambridge, 1997.
[20] Lennon C., Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves, Proc. Amer. Math. Soc., 2011, 139:1931-1938.
[21] McCarthy D., Extending Gaussian hypergeometric series to the p-adic setting, Int. J. Number Theory, 2012, 8:1581-1612.
[22] McCarthy D., On a supercongruence conjecture of Rodriguez-Villegas, Proc. Amer. Math. Soc., 2012, 140:2241-2254.
[23] McCarthy D., Transformations of well-poised hypergeometric functions over finite fields, Finite Fields Appl., 2012, 18:1133-1147.
[24] McCarthy D., The trace of Frobenius of elliptic curves and the p-adic gamma function, Pacific J. Math., 2013, 261:219-236.
[25] Robert A. M., A Course in p-adic Analysis, GTM 198, Springer-Verlag, New York, 2000.
[26] Wang R. Y., Wen B. B., Cao W., Degree matrices and enumeration of rational points of some hypersurfaces over finite fields, J. Number Theory, 2017, 177:91-99.
[27] Yu Y. D., Variation of the unit root along the Dwork family of Calabi-Yau varieties, Math. Ann., 2009, 343:53-78.
国家自然科学基金资助项目(11871291);宁波市自然科学基金资助项目(2019A610035)
/
〈 | 〉 |